| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 14
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
2.
On domination numbers of graph bundles
Blaž Zmazek, Janez Žerovnik, 2005

Opis: Let ▫$gamma(G)$▫ be the domination number of a graph ▫$G$▫. It is shown that for any ▫$k ge 0$▫ there exists a Cartesian graph bundle ▫$B Box_varphi F$▫ such that ▫$gamma(B Box_varphi F) = gamma(B)gamma(F) - 2k$▫. The domination numbers of Cartesian bundles of two cycles are determined exactly when the fibre graph is a triangle or a square. A statement similar to Vizing's conjecture on strong graph bundles is shown not to be true by proving the inequality ▫$gamma(B boxtimes_varphi F) le gamma(B)gamma(F)$▫ for strong graph bundles. Examples of graphs ▫$B$▫ and ▫$F$▫ with ▫$gamma(B boxtimes_varphi F) < gamma(B)gamma(F)$▫ are given.
Ključne besede: matematika, teorija grafov, kartezični produkt grafov, dominantno število, dominantna množica, grafovski sveženj, mathematics, graph theory, graph bundle, dominating set, domination number, Cartesian product
Objavljeno: 10.07.2015; Ogledov: 495; Prenosov: 53
URL Povezava na celotno besedilo

3.
Domination game played on trees and spanning subgraphs
Boštjan Brešar, Sandi Klavžar, Douglas F. Rall, 2011

Opis: Igra dominacije na grafu ▫$G$▫ je bila vpeljana v [B. Brešar, S. Klavžar, D. F. Rall, Domination game and an imagination strategy, SIAM J. Discrete Math. 24 (2010) 979-991]. Dva igralca, Dominator in Zavlačevalec, drug za drugim izbirata po eno vozlišče grafa. Vsako izbrano vozlišče mora povečati množico vozlišč, ki so bila dominirana do tega trenutka igre. Oba igralca izbirata optimalno strategijo, pri čemer Dominator želi igro končati v najmanjšem možnem številu korakov, Zavlačevalec pa v največjem možnem številu korakov. Igralno dominacijsko število ▫$gamma_g(G)$▫ je število izbranih vozlišč v igri, kjer je Dominator prvi izbral vozlišče. Ustrezno invarianto, ko igro začne Zavlačevalec, označimo z ▫$gamma_g'(G)$▫. V članku sta obe igri proučevani na drevesih in vpetih podgrafih. Dokazana je spodnja meja za igralno dominacijsko število drevesa, ki je funkcija njegovega reda in maksimalne stopnje. Pokazano je, da je meja asimptotično optimalna. Dokazano je, da za vsak ▫$k$▫ obstaja drevo ▫$T$▫ z ▫$(gamma_g(T),gamma_g'(T)) = (k,k+1)$▫ in postavljena je domneva, da ne obstaja drevo z ▫$(gamma_g(T),gamma_g'(T)) = (k,k-1)$▫. Obravnavana je povezava med igralnim dominacijskim številom grafa in njegovimi vpetimi podgrafi. Dokazano je, da za vsako naravno število ▫$ell geq 1$▫ obstaja graf ▫$G$▫ z vpetim drevesom ▫$T$▫, tako da velja ▫$gamma_g(G)-gamma_g(T)ge ell$▫. Nadalje obstajajo 3-povezani grafi ▫$G$▫, ki imajo vpeta drevesa z igralnim dominacijskim številom poljubno manjšim od ▫$G$▫.
Ključne besede: igra dominacije, igralno dominacijsko število, drevo, vpeti podgraf, graph theory, domination game, game domination number, tree, spanning subgraph
Objavljeno: 10.07.2015; Ogledov: 604; Prenosov: 48
URL Povezava na celotno besedilo

4.
5.
6.
7.
Domination game
Boštjan Brešar, Sandi Klavžar, Douglas F. Rall, 2009

Opis: The domination game played on a graph ▫$G$▫ consists of two players, Dominator and Staller who alternate taking turns choosing a vertex from ▫$G$▫ such that whenever a vertex is chosen the graph in as few steps as possible and Staller wishes to delay the process as much as possible. The game domination number ▫$gamma_g(G)$▫ is the number of vertices chosen when Dominator starts the game and the Staller-start game domination number ▫$gamma'_g(G)$▫ when Staller starts the game. It is proved that for any graph ▫$G$▫, ▫$gamma(G) le gamma_g(G) le 2gamma(G) - 1$▫, and that all possible values can be realized. It is also proved that for any graph ▫$G$▫, ▫$gamma_g(G) - 1 le gamma'_g(G) le gamma_g(G) + 2$▫, and that most of the possibilities for mutual values of ▫$gamma_g(G)$▫ and ▫$gamma'_g(G)$▫ can be realized. A connection with Vizing's conjecture is established and several problems and conjectures stated.
Ključne besede: teorija grafov, teorija iger, dominantnost, Vizingova domneva, graph theory, game theory, domination, domination game, game domination number, Vizing's conjecture
Objavljeno: 10.07.2015; Ogledov: 375; Prenosov: 5
URL Povezava na celotno besedilo

8.
Lower bounds for domination and total domination number of direct products graphs
Gašper Mekiš, 2009

Opis: An exact lower bound for the domination number and the total domination number of the direct product of finitely many complete graphs is given: ▫$gamma(times_{i=1}^t K_{n_i} ge t+1$▫, ▫$t ge 3$▫. Sharpness is established in the case when the factors are large enough in comparison to the number of factors. The main result gives a lower bound for the domination (and the total domination) number of the direct product of two arbitrary graphs: ▫$gamma(G times H) ge gamma(G) + gamma(H) - 1$▫. Infinite families of graphs that attain the bound are presented. For these graphs it also holds ▫$gamma_t(G times H) = gamma(G) + gamma(H) - 1$▫. Some additional parallels with the total domination number are made.
Ključne besede: matematika, teorija grafov, dominacijska množica, dominacijsko število, celotna dominacijska množica, celotno dominacijsko število, direktni produkt grafov, poln graf, mathematics, graph theory, dominating set, domination number, total dominating set, total domination number, direct product graphs, complete graphs
Objavljeno: 10.07.2015; Ogledov: 369; Prenosov: 20
URL Povezava na celotno besedilo

9.
Roman domination number of the Cartesian products of paths and cycles
Polona Repolusk, Janez Žerovnik, 2011, izvirni znanstveni članek

Opis: Rimska dominacija je zgodovinsko utemeljena različica običajne dominacije, pri kateri vozlišča grafa označimo z oznakami iz množice ▫${0,1,2}$▫ tako, da ima vsako vozlišče z oznako 0 soseda z oznako 2. Najmanjšo izmed vsot oznak grafa imenujemo rimsko dominantno število grafa. Z uporabo algebraičnega pristopa dobimo konstantni algoritem za računanje rimskega dominantnega števila posebne vrste poligrafov: rota- in fasciagrafov. V posebnih primerih izračunamo formule za rimsko dominanto število kartezičnega produkta poti in ciklov ▫$P_n Box P_k$▫, ▫$P_n Box C_k$▫ za ▫$k leq 8$▫ in ▫$n in {mathbb N}$▫ ter za ▫$C_n Box P_k$▫ in ▫$C_n Box C_k$▫ za ▫$k leq 5$▫, ▫$n in {mathbb N}$▫. Dodan je seznam rimskih grafov med kartezičnimi produkti zgoraj omenjenih poti in ciklov.
Ključne besede: teorija grafov, kartezični produkt, rimsko dominantno število, poligrafi, algebra poti, graph theory, Roman domination number, Cartesian product, polygraphs, path algebra
Objavljeno: 10.07.2015; Ogledov: 521; Prenosov: 16
URL Povezava na celotno besedilo

10.
Domination game played on trees and spanning subgraphs
Boštjan Brešar, Sandi Klavžar, Douglas F. Rall, 2013, izvirni znanstveni članek

Opis: Igra dominacije na grafu ▫$G$▫ je bila vpeljana v [B. Brešar, S. Klavžar, D. F. Rall, Domination game and an imagination strategy, SIAM J. Discrete Math. 24 (2010) 979-991]. Dva igralca, Dominator in Zavlačevalec, drug za drugim izbirata po eno vozlišče grafa. Vsako izbrano vozlišče mora povečati množico vozlišč, ki so bila dominirana do tega trenutka igre. Oba igralca izbirata optimalno strategijo, pri čemer Dominator želi igro končati v najmanjšem možnem številu korakov, Zavlačevalec pa v največjem možnem številu korakov. Igralno dominacijsko število ▫$gamma_g(G)$▫ je število izbranih vozlišč v igri, kjer je Dominator prvi izbral vozlišče. Ustrezno invarianto, ko igro začne Zavlačevalec, označimo z ▫$gamma_g'(G)$▫. V članku sta obe igri proučevani na drevesih in vpetih podgrafih. Dokazana je spodnja meja za igralno dominacijsko število drevesa, ki je funkcija njegovega reda in maksimalne stopnje. Pokazano je, da je meja asimptotično optimalna. Dokazano je, da za vsak ▫$k$▫ obstaja drevo ▫$T$▫ z ▫$(gamma_g(T),gamma_g'(T)) = (k,k+1)$▫ in postavljena je domneva, da ne obstaja drevo z ▫$(gamma_g(T),gamma_g'(T)) = (k,k-1)$▫. Obravnavana je povezava med igralnim dominacijskim številom grafa in njegovimi vpetimi podgrafi. Dokazano je, da obstajajo 3-povezani grafi ▫$G$▫, ki vsebujejo 2-povezani vpeti podgraf ▫$H$▫, tako da je igralno dominacijsko število grafa ▫$H$▫ poljubno manjše od igralnega dominacijskega števila grafa ▫$G$▫. Podobno je dokazano, da za vsako celo število ▫$ell ge 1$▫ obstajata graf ▫$G$▫ in njegov vpeti podgraf $T$, tako da velja ▫$gamma_g(G)-gamma_g(T) ge ell$▫. Po drugi strani obstajajo grafi ▫$G$▫, za katere je igralno dominacijsko število vsakega vpetega drevesa v ▫$G$▫ poljubno večje od igralnega dominacijskega števila od ▫$G$▫.
Ključne besede: igra dominacije, igralno dominacijsko število, drevo, vpeti podgraf, graph theory, domination game, game domination number, tree, spanning subgraph
Objavljeno: 10.07.2015; Ogledov: 469; Prenosov: 52
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.29 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici