| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 6 / 6
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
On domination numbers of graph bundles
Blaž Zmazek, Janez Žerovnik, 2005

Opis: Let ▫$gamma(G)$▫ be the domination number of a graph ▫$G$▫. It is shown that for any ▫$k ge 0$▫ there exists a Cartesian graph bundle ▫$B Box_varphi F$▫ such that ▫$gamma(B Box_varphi F) = gamma(B)gamma(F) - 2k$▫. The domination numbers of Cartesian bundles of two cycles are determined exactly when the fibre graph is a triangle or a square. A statement similar to Vizing's conjecture on strong graph bundles is shown not to be true by proving the inequality ▫$gamma(B boxtimes_varphi F) le gamma(B)gamma(F)$▫ for strong graph bundles. Examples of graphs ▫$B$▫ and ▫$F$▫ with ▫$gamma(B boxtimes_varphi F) < gamma(B)gamma(F)$▫ are given.
Ključne besede: matematika, teorija grafov, kartezični produkt grafov, dominantno število, dominantna množica, grafovski sveženj, mathematics, graph theory, graph bundle, dominating set, domination number, Cartesian product
Objavljeno: 10.07.2015; Ogledov: 491; Prenosov: 52
URL Povezava na celotno besedilo

2.
Chromatic numbers of strong product of odd cycles
Janez Žerovnik, 2002, objavljeni znanstveni prispevek na konferenci

Opis: The problem of determining the chromatic numbers of the strong product of cycles is considered. A construction is given proving ▫$chi(G) = 2^p + 1$▫ for a product of ▫$p$▫ odd cycles of lengths at least ▫$2^p + 1$▫. Several consequences are discussed. In particular it is proved that the strong product of ▫$p$▫ factors has chromatic number at most ▫$2^p + 1$▫ provided that each factor admits the homomorphism to sufficiently long odd cycle ▫$C_{m_i}, ; m_i ge 2^p + 1$▫.
Ključne besede: matematika, teorija grafov, krepki produkt grafov, kromatično število, lih cikel, minimalna neodvisna dominantna množica, mathematics, graph theory, strong product, chromatic number, odd cycle, minimal independent dominating set
Objavljeno: 10.07.2015; Ogledov: 443; Prenosov: 40
URL Povezava na celotno besedilo

3.
On integer domination in graphs and Vizing-like problems
Boštjan Brešar, Michael A. Henning, Sandi Klavžar, 2006, izvirni znanstveni članek

Opis: Nadaljujemo študij ▫${k}$▫-dominantnih funkcij v grafih (ali, kot bomo tudi rekli, celoštevilske dominacije), ki so jo začeli Domke, Hedetniemi, Laskar in Fricke. Za celo število ▫$k ge 1$▫ je funkcija ▫$f: V(G) to {0,1,...,k}$▫, definirana na točkah grafa ▫$G$▫, ▫${k}$▫-dominantna funkcija, če je vsota funkcijskih vrednosti na vsaki zaprti okolici vsaj ▫$k$▫. Teža ▫${k}$▫-dominantne funkcije je vsota funkcijskih vrednosti po vseh točkah. ▫${k}$▫-dominantno število grafa ▫$G$▫ je najmanjša teža ▫${k}$▫-dominantne funkcije na ▫$G$▫. Obravnavamo ▫${k}$▫-dominantno število kartezičnega produkta grafov, predvsem probleme povezane s slavno Vizingovo domnevo. Študirana je tudi povezava med ▫${k}$▫-dominantnim številom in drugimi tipi dominacijskih parametrov.
Ključne besede: matematika, teorija grafov, ▫${k}$▫-dominantna funkcija, celoštevilska dominacija, Vizingova domneva, kartezični produkt grafov, mathematics, graph theory, ▫${k}$▫-dominating function, integer domination, Vizing's conjecture, Cartesian product
Objavljeno: 10.07.2015; Ogledov: 425; Prenosov: 30
URL Povezava na celotno besedilo

4.
Lower bounds for domination and total domination number of direct products graphs
Gašper Mekiš, 2009

Opis: An exact lower bound for the domination number and the total domination number of the direct product of finitely many complete graphs is given: ▫$gamma(times_{i=1}^t K_{n_i} ge t+1$▫, ▫$t ge 3$▫. Sharpness is established in the case when the factors are large enough in comparison to the number of factors. The main result gives a lower bound for the domination (and the total domination) number of the direct product of two arbitrary graphs: ▫$gamma(G times H) ge gamma(G) + gamma(H) - 1$▫. Infinite families of graphs that attain the bound are presented. For these graphs it also holds ▫$gamma_t(G times H) = gamma(G) + gamma(H) - 1$▫. Some additional parallels with the total domination number are made.
Ključne besede: matematika, teorija grafov, dominacijska množica, dominacijsko število, celotna dominacijska množica, celotno dominacijsko število, direktni produkt grafov, poln graf, mathematics, graph theory, dominating set, domination number, total dominating set, total domination number, direct product graphs, complete graphs
Objavljeno: 10.07.2015; Ogledov: 368; Prenosov: 20
URL Povezava na celotno besedilo

5.
New results on variants of covering codes in Sierpiński graphs
Sylvain Gravier, Matjaž Kovše, Michel Mollard, Julien Moncel, Aline Perreau, 2013, izvirni znanstveni članek

Opis: V prispevku obravnavamo identifikacijske kode, lokalno-dominacijske kode in totalno-dominacijske kode v grafih Sierpińskega. Podani so izračuni minimalnih vrednosti teh kod v grafih Sierpińskega.
Ključne besede: kode v grafih, identifikacijske kode, lokalno-dominacijske kode, totalna-dominacija, grafi Sierpińskega, codes in graphs, identifying codes, locating-dominating codes, total-domination, Sierpiński graphs
Objavljeno: 10.07.2015; Ogledov: 331; Prenosov: 43
URL Povezava na celotno besedilo

6.
Contributions to the Study of Contemporary Domination Invariants of Graphs
2019, doktorska disertacija

Opis: This doctoral dissertation is devoted to contemporary domination concepts, such as the Grundy domination, the convex domination, the isometric domination and the total domination. Our main focus is to study their structure and algorithmic properties. Four Grundy domination invariants are presented, namely the Grundy domination number, the Grundy total domination number, the Z-Grundy domination number, and the L-Grundy domination number. Some bounds and properties of Grundy domination invariants are proven. All four Grundy domination parameters are studied on trees, bipartite distance-hereditary graphs, split graphs, interval graphs, Sierpi\'nski graphs, Kneser graphs and $P_4$-tidy graphs. Graphs with equal total domination number and Grundy total domination number are investigated. Convex domination and isometric domination are studied on (weak) dominating pair graphs. For the chordal dominating pair graphs we present a polynomial algorithm to compute the convex domination number, and prove the NP-completeness of the corresponding decision problem for the chordal weak dominating pair graphs. For the isometric domination number of weak dominating pair graphs an efficient algorithm is presented. Total domination is studied on the Cartesian product of graphs. We dedicate ourselves to graphs for which the equality holds in Ho's theorem, which states that the total domination number of the Cartesian product of any two graphs without isolated vertices is at least one half of the product of their total domination numbers.
Ključne besede: Grundy domination, Grundy total domination, Z-Grundy domination, L-Grundy domination, convex domination, isometric domination, total domination, trees, split graphs, interval graphs, Sierpi\'nski graphs, Kneser graphs, modular decomposition, dominating pair graphs, Cartesian product
Objavljeno: 23.10.2019; Ogledov: 50; Prenosov: 11
.pdf Celotno besedilo (764,69 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.14 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici