2.
Detekcija napak na odlitkih z globokim učenjem : magistrsko deloTomo Pšeničnik, 2022, magistrsko delo
Opis: Cilj magistrske naloge je preučiti detekcijo napak na odlitkih z uporabo konvolucijskih
nevronskih mrež. Predstavljena je klasifikacija slik dobrih in slabih odlitkov, ki temelji na
globokem učenju. Za učenje nevronske mreže smo uporabili obstoječo zbirko podatkov,
ki vsebuje več kot 7000 slik. Za izdelavo programa smo uporabili okolje Matlab s pomočjo
Deep learning toolbox vmesnika. Izdelali smo model konvolucijske nevronske mreže,
izvedli učenje in prikazali rezultate. V drugem delu smo rezultate želeli izboljšati, zato
smo se poslužili tehnike s prenosnim učenjem. Našim potrebam smo prilagodili obstoječo
AlexNet arhitekturo, naložili zbirko podatkov in izvedli učenje nevronske mreže. Na koncu
prikažemo rezultate kot je klasifikacijska točnost modela. Delovanje modela preizkusimo
še na testni množici slik, katere niso bile vključene v proces učenja.
Ključne besede: Globoko učenje, detekcija napak, klasifikacija, konvolucijska nevronska
mreža, odlitek
Objavljeno v DKUM: 09.12.2022; Ogledov: 681; Prenosov: 61
Celotno besedilo (3,25 MB)