| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Finite element analysis of titanium foam in mechanical response for dental application
Snehashis Pal, Igor Drstvenšek, 2021, izvirni znanstveni članek

Opis: Metals with certain porosity are a new class of materials with extremely low density and a unique combination of excellent mechanical, thermal, electrical, and biocompatible properties. Absorption of impact and shock energy, dust and fluid filtration, construction materials, and most importantly, biocompatible implants are all potential applications for metallic foams. An orthopaedic implant made of metallic foam can provide an open-cell structure that allows for the ingrowth of new bone tissue and the transport of body fluids. Due to its strong biocompatibility and stable fixation between the implant and human bone, titanium foam has recently received much attention as an implant material. Finite element modelling is a suitable method to obtain an efficiently designed implant. Accurate finite element analyses depend on the precision before implementation as well as the functionality of the material properties employed. Since the mechanical performances of titanium foam and solid titanium are different, a constitutive model for porous metal is required. The model of Deshpande and Fleck in the finite element analysis software ABAQUS is used to describe the compressive and flexural deformation properties of titanium foam with 63.5% porosity. The finite element simulation results were compared with the practical mechanical properties obtained by compression testing of the foam. Finally, the material modelling was used to investigate the stress distributions on the dental implant system.
Ključne besede: finite element analysis, ABAQUS, titanium foam, sintering, dental implant, material modeling, mechanical properties, bending, compressing
Objavljeno v DKUM: 25.09.2024; Ogledov: 0; Prenosov: 5
.pdf Celotno besedilo (2,81 MB)
Gradivo ima več datotek! Več...

2.
Investigation of the best manufacturing orientation of Co-Cr-W-Si dental prosthetic elements in the selective laser melting process
Snehashis Pal, Janez Gotlih, Igor Drstvenšek, 2022, izvirni znanstveni članek

Opis: It is well known that Selective Laser Melting (SLM) does not provide the same mechanical properties in all directions of the part. This is due to the microstructural grain orientation and pore shape in SLM products. Therefore, depending on the direction of the pressure applied to the SLM product, a different manufacturing orientation is required to achieve the best mechanical properties. Changing the microstructural grain orientation is difficult through SLM, but a process to reduce the size and number of the pores can be discovered through different combinations of manufacturing parameters. In prosthodontics, pressure is usually applied in the vertical direction, which leads to compression and bending of crowns with bridges. The compressive load can be easily absorbed in the crowns, but the bending force has a significant effect here. Therefore, a product with high tensile strength and high ductility is needed to survive longer. Considering these requirements, this study determined the best parameters for laser processing by SLM method to reduce porosity and improve mechanical strength and ductility of Co-CrW-Si alloy products. The result is a relative product density of 100% for cubic specimens and a yield strength, ultimate tensile strength, and elongation at break of the tensile specimens of 900 MPa, 1200 MPa, and 15%, respectively, obtained in specimen build-up in the Z direction with a laser power of 60 W and a scanning speed of 450 mm/s. Eventually, the best orientation for the production of dental prosthetic elements using the SLM process was determined.
Ključne besede: cobalt-chromium alloy, dental implant, density, tensile strength, ductility, selective laser melting
Objavljeno v DKUM: 03.07.2024; Ogledov: 78; Prenosov: 18
.pdf Celotno besedilo (640,47 KB)
Gradivo ima več datotek! Več...

3.
Iskanje izvedeno v 0.03 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici