| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Data sharing concepts : a viable system model diagnosis
Igor Perko, 2023, izvirni znanstveni članek

Opis: Purpose Artificial intelligence (AI) reasoning is fuelled by high-quality, detailed behavioural data. These can usually be obtained by the biometrical sensors embedded in smart devices. The currently used data collecting approach, where data ownership and property rights are taken by the data scientists, designers of a device or a related application, delivers multiple ethical, sociological and governance concerns. In this paper, the author is opening a systemic examination of a data sharing concept in which data producers execute their data property rights. Design/methodology/approach Since data sharing concept delivers a substantially different alternative, it needs to be thoroughly examined from multiple perspectives, among them: the ethical, social and feasibility. At this stage, theoretical examination modes in the form of literature analysis and mental model development are being performed. Findings Data sharing concepts, framework, mechanisms and swift viability are examined. The author determined that data sharing could lead to virtuous data science by augmenting data producers' capacity to govern their data and regulators' capacity to interact in the process. Truly interdisciplinary research is proposed to follow up on this research. Research limitations/implications Since the research proposal is theoretical, the proposal may not provide direct applicative value but is largely focussed on fuelling the research directions. Practical implications For the researchers, data sharing concepts will provide an alternative approach and help resolve multiple ethical considerations related to the internet of things (IoT) data collecting approach. For the practitioners in data science, it will provide numerous new challenges, such as distributed data storing, distributed data analysis and intelligent data sharing protocols. Social implications Data sharing may post significant implications in research and development. Since ethical, legislative moral and trust-related issues are managed in the negotiation process, data can be shared freely, which in a practical sense expands the data pool for virtuous research in social sciences. Originality/value The paper opens new research directions of data sharing concepts and space for a new field of research.
Ključne besede: hybrid reality, data sharing, systems thinking, cybernetics, artificial intelligence
Objavljeno v DKUM: 14.02.2024; Ogledov: 367; Prenosov: 17
.pdf Celotno besedilo (663,49 KB)
Gradivo ima več datotek! Več...

2.
Towards trusted data sharing and exchange in agro-food supply chains: design principles for agricultural data spaces
Martina Šestak, Daniel Copot, izvirni znanstveni članek

Opis: In the modern agricultural landscape, realizing data’s full potential requires a unified infrastructure where stakeholders collaborate and share their data to gain insights and create business value. The agricultural data ecosystem (ADE) serves as a crucial socio-technical infrastructure, aggregating diverse data from various platforms and, thus, advertising sustainable agriculture and digitalization. Establishing trustworthy data sharing and exchange in agro-food value chains involves socioeconomic and technological elements addressed by the agricultural data space (ADS) and its trust principles. This paper outlines key challenges to data sharing in agro-food chains impeding ADE establishment based on the review of 27 studies in scientific literature. Challenges mainly arise from stakeholders’ mistrust in the data-sharing process, inadequate data access and use policies, and unclear data ownership agreements. In the ADE context, interoperability is a particularly challenging topic for ensuring the long-term sustainability of the system. Considering these challenges and data space principles and building blocks, we propose a set of design principles for ADS design and implementation that aim to mitigate the adverse impact of these challenges and facilitate agricultural data sharing and exchange.
Ključne besede: data sharing and exchange, agro-food supply chain, design principles, agricultural data space, agricultural data ecosystem
Objavljeno v DKUM: 30.11.2023; Ogledov: 441; Prenosov: 50
.pdf Celotno besedilo (948,02 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici