| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Uporaba metod strojnega učenja za klasifikacijo nalog po prioritetah v IT projektih
Tatyana Unuchak, Mirjana Kljajić Borštnar, Yauhen Unuchak, 2025, izvirni znanstveni članek

Opis: Določanje prioritet in razvrščanje nalog še vedno predstavlja izziv pri učinkovitem vodenju projektov. Obstaja veliko klasičnih pristopov za določanje prioritet. Vendar so te tehnike delovno intenzivne, subjektivne in neprilagodljive. V prispevku obravnavamo pristope za samodejno določanje prioritet nalog v IT projektih, ki temeljijo na strojnem učenju. Raziskujemo, kako lahko z uporabo metod strojnega učenja pomagamo projektnim vodjem pri učinkovitejšem razvrščanju nalog v IT projektih. V ta namen smo na množici več kot 1000000 zapisov projektnih nalog razvili klasifikacijski model za samodejno določanje prioritet. Problem, ki smo ga obravnavali, je večrazredni, pri tem je večina primerov, označenih z najvišjo prioriteto, kar predstavlja izziv pri modeliranju kot tudi pri učinkovitosti upravljanja IT projektov. Preskusili smo različne algoritme ter različne pristope, s ciljem izboljšanja rezultatov klasifikacije. Pokazali smo, da je naloge smiselno razvrstiti v manjše skupine prioritet, kar prispeva k večji natančnosti klasifikacijskega modela in preglednosti prioritet nalog, slednje pa lahko olajša upravljanje IT projektov.
Ključne besede: IT project management, machine learning, task prioritization, multiclass classification, data imbalance
Objavljeno v DKUM: 28.08.2025; Ogledov: 0; Prenosov: 3
.pdf Celotno besedilo (2,25 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.02 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici