| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Microcrack initiation and growth in heat-risistant 15Kh2MFA steel under cyclic loading
P. Yasniy, V.B. Hlado, V. Hutsaylyuk, Tomaž Vuherer, 2005, izvirni znanstveni članek

Opis: This paper presents the results of investigation of a nuclear reactor pressurevessel steel 15Kh2MFA of two strength levels under cyclic loading. Themechanism of microcrack formation on the surface and in the bulk of 15Kh2MFA steel under cyclic deformation was investigated. Analysis of the specimen surfaces has shown that microcracks are caused by cyclic sliding in grains most favourably oriented with respect to the direction of the maximum shear stresses. Transmission electron microscope investigations show that microcracks in the material inside the grains are formed mainly along the band-type dislocation structure parallel to the dislocation subboundary. During cyclic deformation, the dislocation density on the subboundaries increases, in the local areas the dislocation density becomes limiting and it reaches the plasticity limit and causes microcrack formation. The interrelation of the average length of microcracks and their surface density with the energy density of inelastic deformation has been found.
Ključne besede: material testing, nuclear reactor, pressure vessel, cyclic loading, cyclic deformation, dislocation structure, fatigue crack growth, TEM, fracture mechanics
Objavljeno: 01.06.2012; Ogledov: 1008; Prenosov: 18
URL Povezava na celotno besedilo

The analysis of permanent deformations of repeatedly loaded gravels from the Mura region
Gregor Ficko, Bojan Žlender, 2005, izvirni znanstveni članek

Opis: This contribution presents the results of the analysis of permanent deformations of gravel in the Mura region under repeated loading. The purpose of the analysis is to forecast the development of permanent normalised axial deformations ▫$/epsilon_1^{p*}$▫ regarding the number of loading cycles N and appurtenant stress states during cycling loading. The analysis used the results of tests performed by ZAG Ljubljana and Faculty of Civil Engineering and Geodesy (FGG) of the University of Ljubljana [1]. The analysis considers five types of stonematerials of different quantity of crushed grains in the mixture and of different water contents. Four types of stone materials are mixtures of different portions of crushed grains larger than 2 mm (Dcr = 87.7 %, 58.9 %, 32.6 % in 0 %), and of the water content around w = wopt - 2%. The stone material with portions of crushed grains larger than 2 mm Dcr= 58.9 % is analysed also for water content w = wopt + 0.7 %. The results of the analysis are deformations expressed as a function of the number of loading cycles N, and a spherical component of the repeated loading p and a distortional component of the repeated loading q. The results can be presentedas deformation surfaces in the ▫$/epsilon_1^{p*}$▫ - p - q space for an arbitrary number of cycles N. The relation between the spherical stress component p and the distortional stress component q, at arbitrary values of axial permanent deformations ▫$/epsilon_1^{p*}$▫, gives a failure envelope, and the so called deformation envelopes in the p - q space. The failure envelopes and deformation envelopes are given separately for five types of stone material. The deformation envelopes are low at small values of the axial permanent deformation ▫$/epsilon_1^{p*}$▫ When permanent axial deformations grow, the permanent deformation approaches the failure envelopes. The failure envelopes for individual types of stone material agree with research results performed by [1]. The analysis of permanent deformations also shows their dependence on the portion of crushed material Dcr in the mixture of crushed and uncrushed stone material. The deformation envelope for uncrushed stone material is situated in the lowest position, regarding the portion of crushed material in the mixture. With an increased portion of crushed material in the mixture of crushed and uncrushed stone material, the deformation envelope is also higher, similarly to the lawfulness of failure envelopes. The relation of failure and deformation envelopes is mathematically established as a function of the portion of crushed grains larger than 2 mm. The comparison of stone material results for different water contents shows that a minimal increase of water content above the optimal one essentially increases deformation.
Ključne besede: building materials, Mura river gravel, cyclic triaxial tests, granular base material, permanent deformation, normalized axial permanent deformation
Objavljeno: 01.06.2012; Ogledov: 1023; Prenosov: 26
.pdf Celotno besedilo (988,09 KB)
Gradivo ima več datotek! Več...

A multiscale approach to deformation and fracture of heat-resistant steel under static and cyclic loading
P. O. Maruščak, Denys Baran, Vladimir Gliha, 2013, izvirni znanstveni članek

Opis: Regularities of static and cyclic deformation, damage and fracture of heat-resistant steel 25Kh1M1F, based on the approaches of physical mesomechanics and 3D interferometry method, are presented in this paper. The applicability of these techniques for different hierarchy levels of deformation was studied. The investigation of scanning microscope photos was conducted for several dissipative structures, fragmentation of the material, localisation of macrodeformation and subsequent failure on macro- and mesolevel. It is shown that the used modern techniques of experimental analysis are very efficient in understanding deformation and damage evolution in materials.
Ključne besede: fracture, heat-resistant steel, cyclic loading, fatigue, plastic deformation
Objavljeno: 18.08.2017; Ogledov: 320; Prenosov: 178
.pdf Celotno besedilo (2,42 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.08 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici