| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Shear modulus of clay-sand mixtures using bender element test
Ali Firat Cabalar, M. M. Khalaf, Zuheir Karabash, 2018, izvirni znanstveni članek

Opis: Bender-element (BE) tests were conducted on clay-sand mixtures to investigate the variation of small strain-shear modulus (Gmax) with the sand content and the physical characteristics (size, shape) of the sand grains in the mixtures. Three different gradations (0.6–0.3 mm, 1.0–0.6 mm and 2.0–1.0 mm) of sands having distinct shapes (rounded, angular) were added to a low-plasticity clay with mixture ratios of 0% (clean clay), 10%, 20%, 30%, 40%, and 50%. For the purposes of performing a correlation analysis, unconfined compression (UC) tests were also carried out on the same specimens. The tests indicated that both the Gmax and unconfined compressive strength (q u) values of the specimens with angular sand grains were measured to be lower than those with rounded sand grains, for all sizes and percentages. As the percentage of sand in the mixture increases, the Gmax values increase, while the qu values decrease. The results further suggested that the Gmaxvalues decrease as the q u values decreases as the size of the sand grains reduces.
Ključne besede: sand, clay, bender element, unconfined compressive strength
Objavljeno: 11.10.2018; Ogledov: 641; Prenosov: 70
.pdf Celotno besedilo (844,22 KB)
Gradivo ima več datotek! Več...

Corrosion mechanisms for cemented soils in three different sulfate solutions
Pengju Han, Chao Ren, Xiaohong Bai, Frank Chen, 2015, izvirni znanstveni članek

Opis: In order to simulate and study the corrosion effects on the compressive strength of cemented soils that could be exposed in a polluted environment, a series of tests were conducted on cemented soil blocks cured with different concentrations of H2SO4, MgSO4, and Na2SO4 solutions. The test results show that the corrosion degree generally increases with the corrosion time and the solution concentration, while the compressive strength decreases with the increasing corrosion degree. The corrosion degree is highest for the Na2SO4 solution, followed by the MgSO4 and H2SO4 solutions. Namely, when the SO4 2- ion exists in a solution, the corrosion degree for the positive ions follows this descending order: Na+, Mg2+, and H+. X-ray diffraction (XRD) phase analyses were performed for the cemented soil samples after corrosion and ionic concentrations. The results show that the compressive strength decreases with an increase of the Mg2+ concentration in the MgSO4 solution and the Na+ concentration in the Na2SO4 solution. At the same time, the strength increases with an increase of the pH value of the H2SO4 solution. Based on the chemical analysis results, the corrosion of H2SO4 or MgSO4 solutions on cemented soils is deemed as a composite action involving the combined resolving and crystallizing corrosion processes. Furthermore, the corrosion of the Na2SO4 solution of cemented soil is a composite action consisting of dissolving and crystallizing.
Ključne besede: cemented soil, compressive strength, corrosion mechanism, sulfate, pollution, solution
Objavljeno: 15.06.2018; Ogledov: 771; Prenosov: 48
.pdf Celotno besedilo (305,84 KB)
Gradivo ima več datotek! Več...

Relationship between the compressive and tensile strengths of lime-treated clay containing coconut fibres
Vivi Anggraini, Bujang Huat, Afshin Asadi, Haslinda Nahazanan, 2015, izvirni znanstveni članek

Opis: The effects of coconut fibre on the mechanical characteristics of lime-treated clay are investigated in this study. The lime-treated clay specimens were prepared with a variety of coconut-fibre contents, i.e., 0.5%, 1%, 1.5% and 2%, in terms of the weight of dry soil. The stabilized specimens were tested at 7, 28 and 90 days after the treatment in order to observe the evolution of the mechanical resistance with time. The results of the unconfined compressive strength tests were used to determine the relationships between the compressive strengths and the indirect tensile strengths of the stabilized soil. Furthermore, the optimum percentage of coconut fibre mixed in the soil/lime mixtures was 1% of the dry mass and reinforcement at 90 days increases the peak compressive strength and the indirect tensile strength. Coconut-fibre inclusion changes the brittle behaviour of the lime-treated clay soil to give it a more ductile character.
Ključne besede: coconut fibre, lime, compressive strength, indirect tensile strength, clay soil, failure characteristics
Objavljeno: 14.06.2018; Ogledov: 476; Prenosov: 30
.pdf Celotno besedilo (755,61 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.09 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici