| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Particle swarm optimization for automatic creation of complex graphic characters
Iztok Fister, Matjaž Perc, Karin Fister, Salahuddin M. Kamal, Andres Iglesias, Iztok Fister, 2015, izvirni znanstveni članek

Opis: Nature-inspired algorithms are a very promising tool for solving the hardest problems in computer sciences and mathematics. These algorithms are typically inspired by the fascinating behavior at display in biological systems, such as bee swarms or fish schools. So far, these algorithms have been applied in many practical applications. In this paper, we present a simple particle swarm optimization, which allows automatic creation of complex two-dimensional graphic characters. The method involves constructing the base characters, optimizing the modifications of the base characters with the particle swarm optimization algorithm, and finally generating the graphic characters from the solution. We demonstrate the effectiveness of our approach with the creation of simple snowman, but we also outline in detail how more complex characters can be created.
Ključne besede: optimizacija roja, kompleksni sistem, kaos, particle swarm optimization, complex system, graphics, chaos
Objavljeno: 07.04.2017; Ogledov: 1062; Prenosov: 83
URL Povezava na celotno besedilo

2.
3.
Encyclopedia of complexity and systems science
slovar, enciklopedija, leksikon, priročnik, atlas, zemljevid

Opis: Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other natural disasters; the dynamics of turbulent flows; lasers or fluids in physics, microprocessor design; macromolecular assembly in chemistry and biophysics; brain functions in cognitive neuroscience; climate change; ecosystem management; traffic management; and business cycles. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. This unique work will extend the influence of complexity and system science to a much wider audience than has been possible to date.
Ključne besede: cellular automata, complex networks, computational nanoscience, ecological complexity, ergodic theory, fractals, game theory, granular computing, graph theory, intelligent systems, perturbation theory, quantum information science, system dynamics, traffic management, chaos, climate modelling, complex systems, dynamical sistems, fuzzy theory systems, nonlinear systems, soft computing, stochastic processes, synergetics, self-organization, systems biology, systems science
Objavljeno: 01.06.2012; Ogledov: 1996; Prenosov: 99
URL Povezava na celotno besedilo

4.
The complexity of porous structure of building materials
Marko Samec, 2011, doktorska disertacija

Opis: This thesis seeks to establish the link between the structure (in a topological sense) of porous space and charged particle dynamics in porous matter, specifically in constituent elements of sustainable building materials such as clay, cement and soil. The work done is a combination of experimental research and modelling of analysed data using advanced and expanded network models to model pore structure and generalized conductivity model. The main outcome of this doctoral thesis is the demonstration that there is a correlation between the large scale structure of the pore space and the properties of the motion of charged particles through the pore space. This was achieved by conducting two experiments: the structure of pore space of selected porous materials (soil samples, clays, cements, clay-cement mixtures) was investigated using state-of-the-art X-ray computed microtomography, while the dynamics of charged particles in the samples was probed using low-frequency dielectric spectroscopy. The research done and described in the thesis is directed towards the advancement of understanding the transport phenomena and the structure of porous media which is of paramount importance for solving problems in building physics dealing with moist transport in building's envelope, the building-ground interaction, and in transport of contaminants in the vicinity of the repositories where the transfer of moist through soil can be the source of contamination.
Ključne besede: porous matter, clay-water system, hydrating cement, fractional dynamics, dielectric response, X-ray computed tomography, image analysis, complex network
Objavljeno: 11.05.2011; Ogledov: 3996; Prenosov: 189
.pdf Celotno besedilo (34,69 MB)

Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici