1. Diverse strategic identities induce dynamical states in evolutionary gamesIrene Sendiña-Nadal, Inmaculada Leyva, Matjaž Perc, David Papo, Marko Jusup, Zhen Wang, Juan A. Almendral, Pouya Manshour, Stefano Boccaletti, 2020, izvirni znanstveni članek Opis: Evolutionary games provide the theoretical backbone for many aspects of our social life: from cooperation to crime, from climate inaction to imperfect vaccination and epidemic spreading, from antibiotics overuse to biodiversity preservation. An important, and so far overlooked, aspect of reality is the diverse strategic identities of individuals. While applying the same strategy to all interaction partners may be an acceptable assumption for simpler forms of life, this fails to account for the behavior of more complex living beings. For instance, we humans act differently around different people. Here we show that allowing individuals to adopt different strategies with different partners yields a very rich evolutionary dynamics, including time-dependent coexistence of cooperation and defection, systemwide shifts in the dominant strategy, and maturation in individual choices. Our results are robust to variations in network type and size, and strategy updating rules. Accounting for diverse strategic identities thus has far-reaching implications in the mathematical modeling of social games. Ključne besede: cooperation, evolutionary game theory, social physics, collective dynamics, complex system Objavljeno v DKUM: 20.11.2024; Ogledov: 0; Prenosov: 3
Celotno besedilo (4,71 MB) Gradivo ima več datotek! Več... |
2. Strategically positioning cooperators can facilitate the contagion of cooperationGuoli Yang, Matteo Cavaliere, Cheng Zhu, Matjaž Perc, 2021, izvirni znanstveni članek Opis: The spreading of cooperation in structured population is a challenging problem which can be observed at diferent scales of social and biological organization. Generally, the problem is studied by evaluating the chances that few initial invading cooperators, randomly appearing in a network, can lead to the spreading of cooperation. In this paper we demonstrate that in many scenarios some cooperators are more infuential than others and their initial positions can facilitate the spreading of cooperation. We investigate six diferent ways to add initial cooperators in a network of cheaters, based on diferent network-based measurements. Our research reveals that strategically positioning the initial cooperators in a population of cheaters allows to decrease the number of initial cooperators necessary to successfully seed cooperation. The strategic positioning of initial cooperators can also help to shorten the time necessary for the restoration of cooperation. The optimal ways in which the initial cooperators should be placed is, however, non-trivial in that it depends on the degree of competition, the underlying game, and the network structure. Overall, our results show that, in structured populations, few cooperators, well positioned in strategically chosen places, can spread cooperation faster and easier than a large number of cooperators that are placed badly. Ključne besede: cooperation, evolutionary game theory, social physics, collective dynamics, complex system Objavljeno v DKUM: 22.10.2024; Ogledov: 0; Prenosov: 1
Celotno besedilo (5,68 MB) Gradivo ima več datotek! Več... |
3. Determinants of collective failure in excitable networksUroš Barać, Matjaž Perc, Marko Gosak, 2023, izvirni znanstveni članek Opis: We study collective failures in biologically realistic networks that consist of coupled excitable units. The networks have broad-scale degree distribution, high modularity, and small-world properties, while the excitable dynamics is determined by the paradigmatic FitzHugh–Nagumo model. We consider different coupling strengths, bifurcation distances, and various aging scenarios as potential culprits of collective failure. We find that for intermediate coupling strengths, the network remains globally active the longest if the high-degree nodes are first targets for inactivation. This agrees well with previously published results, which showed that oscillatory networks can be highly fragile to the targeted inactivation of low-degree nodes, especially under weak coupling. However, we also show that the most efficient strategy to enact collective failure does not only non-monotonically depend on the coupling strength, but it also depends on the distance from the bifurcation point to the oscillatory behavior of individual excitable units. Altogether, we provide a comprehensive account of determinants of collective failure in excitable networks, and we hope this will prove useful for better understanding breakdowns in systems that are subject to such dynamics. Ključne besede: collective behavior, excitable media, complex network, neuronal dynamics Objavljeno v DKUM: 10.06.2024; Ogledov: 163; Prenosov: 20
Celotno besedilo (6,87 MB) Gradivo ima več datotek! Več... |
4. Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillatorsMatjaž Perc, Marko Gosak, 2008, izvirni znanstveni članek Opis: We study the phenomenon of stochastic resonance on diffusive, small-world and scale-free networks consisting of bistable overdamped oscillators. Important thereby is the fact that the external subthreshold periodic forcing is introduced only to a single oscillator of the network. Hence, the forcing acts as a pacemaker trying to impose its rhythm on the whole network through the unit to which it is introduced. Without the addition of additive spatiotemporal noise, however, the whole network, including the unit that is directly exposed to the pacemaker, remains trapped forever in one of the two stable steady states of the local dynamics. We show that the correlation between the frequency of subthreshold pacemaker activity and the response of the network is resonantly dependent on the intensity of additive noise. The reported pacemaker-driven stochastic resonance depends most significantly on the coupling strength and the underlying network structure. Namely, the outreach of the pacemaker obeys the classic diffusion law in the case of nearest-neighbor interactions, thus being proportional to the square root of the coupling strength, whereas it becomes superdiffusive by an appropriate small-world or scale-free topology of the interaction network. In particular, the scale-free topology is identified as being optimal for the dissemination of localized rhythmic activity across the whole network. Also, we show that the ratio between the clustering coefficient and the characteristic path length is the crucial quantity defining the ability of a small-world network to facilitate the outreach of the pacemaker-emitted subthreshold rhythm. We additionally confirm these findings by using the FitzHugh-Nagumo excitable system as an alternative to the bistable overdamped oscillator. Ključne besede: noise, bistable dynamics, stochastic simulations, complex networks Objavljeno v DKUM: 03.07.2017; Ogledov: 1498; Prenosov: 471
Celotno besedilo (2,18 MB) Gradivo ima več datotek! Več... |
5. Fast random rewiring and strong connectivity impair subthreshold signal detection in excitable networksVladislav Volman, Matjaž Perc, 2010, izvirni znanstveni članek Opis: We study dynamical responses in locally paced networks consisting of diffusively coupled excitable units with dynamically adjusted connectivity. It is shown that for weak subthreshold pacing, excessive or strong connectivity impairs the reliable response of a network to the stimulus. Fast random dynamic rewiring of the network also acts detrimentally on signal detection by enforcing a faster relaxation upon the paced unit. Our results indicate that efficient signal processing on excitable complex networks requires tight correspondence between the dynamics of connectivity and the dynamical processes taking place on the network. This, in turn, suggests the existence of 'function-follows-form' principles for systems described within this framework. Ključne besede: neuronal dynamics, complex networks, coevolution, cognition Objavljeno v DKUM: 03.07.2017; Ogledov: 1321; Prenosov: 355
Celotno besedilo (1,36 MB) |
6. |
7. Confined liquid crystaline 5CB in 2D thermodynamic space : preliminary dielectric relaxation studySebastian Pawlus, Jana Osinska, Sylwester J. Rzoska, Samo Kralj, George Cordoyiannis, 2007, objavljeni znanstveni prispevek na konferenci Opis: Results of preliminary broadband dielectric spectroscopy studies in a wide range of temperatures and pressures range for a mixture of rod-like liquid crystalline 4-cyano-4-pentylalkylbiphenyl (5CB) and hydrophilic silica spheres (Aerosil 300) are shown. Pretransitional anomaly, observed previously in the bulk 5CB, has been found. Temperature dynamics of the mixture was investigated with via the DC conductivity ?, coupled to the reorientational relaxation. The derivative based analysis of electric conductivity showed a clear non-Arrhenius dynamics and indicated the anomalous increase of the fragility strength coefficient on approaching the isotropic-nematic transition. Pressure investigations of the solidification from the nematic phase showed the increase of the transition temperature on pressuring but with unusual increasing of dTNS/dP coefficient. Ključne besede: physics, liquid crystals, complex dynamics, random constraints, high pressures Objavljeno v DKUM: 07.06.2012; Ogledov: 1634; Prenosov: 95
Povezava na celotno besedilo |
8. Spatial coherence resonance in neuronal media with discrete local dynamicsMatjaž Perc, 2006, izvirni znanstveni članek Opis: We study effects of spatiotemporal additive noise on the spatial dynamics of excitable neuronal media that is locally modelled by a two-dimensional map. We focus on the ability of noise to enhance a particular spatial frequency of the media in a resonant manner. We show that there exists an optimal noise intensity for which the inherent spatial periodicity of the media is resonantly pronounced, thus marking the existence of spatial coherence resonance in the studied system. Additionally, results are discussed in view of their possible biological importance. Ključne besede: physics, complex systems, dynamical systems, noise, spatial dynamics, chaos, chaotic systems, chaos control, resonance Objavljeno v DKUM: 07.06.2012; Ogledov: 2462; Prenosov: 107
Povezava na celotno besedilo |
9. Encyclopedia of complexity and systems scienceslovar, enciklopedija, leksikon, priročnik, atlas, zemljevid Opis: Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other natural disasters; the dynamics of turbulent flows; lasers or fluids in physics, microprocessor design; macromolecular assembly in chemistry and biophysics; brain functions in cognitive neuroscience; climate change; ecosystem management; traffic management; and business cycles. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. This unique work will extend the influence of complexity and system science to a much wider audience than has been possible to date. Ključne besede: cellular automata, complex networks, computational nanoscience, ecological complexity, ergodic theory, fractals, game theory, granular computing, graph theory, intelligent systems, perturbation theory, quantum information science, system dynamics, traffic management, chaos, climate modelling, complex systems, dynamical sistems, fuzzy theory systems, nonlinear systems, soft computing, stochastic processes, synergetics, self-organization, systems biology, systems science Objavljeno v DKUM: 01.06.2012; Ogledov: 2813; Prenosov: 144
Povezava na celotno besedilo |
10. The complexity of porous structure of building materialsMarko Samec, 2011, doktorska disertacija Opis: This thesis seeks to establish the link between the structure (in a topological sense) of porous space and charged particle dynamics in porous matter, specifically in constituent elements of sustainable building materials such as clay, cement and soil. The work done is a combination of experimental research and modelling of analysed data using advanced and expanded network models to model pore structure and generalized conductivity model. The main outcome of this doctoral thesis is the demonstration that there is a correlation between the large scale structure of the pore space and the properties of the motion of charged particles through the pore space. This was achieved by conducting two experiments: the structure of pore space of selected porous materials (soil samples, clays, cements, clay-cement mixtures) was investigated using state-of-the-art X-ray computed microtomography, while the dynamics of charged particles in the samples was probed using low-frequency dielectric spectroscopy. The research done and described in the thesis is directed towards the advancement of understanding the transport phenomena and the structure of porous media which is of paramount importance for solving problems in building physics dealing with moist transport in building's envelope, the building-ground interaction, and in transport of contaminants in the vicinity of the repositories where the transfer of moist through soil can be the source of contamination. Ključne besede: porous matter, clay-water system, hydrating cement, fractional dynamics, dielectric response, X-ray computed tomography, image analysis, complex network Objavljeno v DKUM: 11.05.2011; Ogledov: 4887; Prenosov: 279
Celotno besedilo (34,69 MB) |