| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 18
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
The b-chromatic number of cubic graphs
Marko Jakovac, Sandi Klavžar, 2009, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: graph theory, chromatic number, graphs, Petersen graph, cubic graphs
Objavljeno: 07.06.2012; Ogledov: 998; Prenosov: 83
URL Povezava na celotno besedilo

2.
On total chromatic number of direct product graphs
Katja Prnaver, Blaž Zmazek, 2009, izvirni znanstveni članek

Ključne besede: graph theory, total chromatic number, direct product, tensor product
Objavljeno: 07.06.2012; Ogledov: 1115; Prenosov: 48
URL Povezava na celotno besedilo

3.
The distinguishing chromatic number of Cartesian products of two complete graphs
Janja Jerebic, Sandi Klavžar, 2008

Opis: Označitev grafa ▫$G$▫ je razlikovalna, če jo ohranja le trivialni avtomorfizem grafa ▫$G$▫. Razlikovalno kromatično število grafa ▫$G$▫ je najmanjše naravno število, za katero obstaja razlikovalna označitev grafa, ki je hkrati tudi dobro barvanje. Za vse ▫$k$▫ in ▫$n$▫ je določeno razlikovalno kromatično število kartezičnih produktov ▫$K_kBox K_n$▫. V večini primerov je enako kromatičnemu številu, kar med drugim odgovori na vprašanje Choia, Hartkeja and Kaula, ali obstajajo še kakšni drugi grafi, za katere velja enakost.
Ključne besede: teorija grafov, razlikovalno kromatično število, grafovski avtomorfizem, kartezični produkt grafov, graph theory, distinguishing chromatic number, graph automorphism, Cartesian product of graphs
Objavljeno: 10.07.2015; Ogledov: 342; Prenosov: 40
URL Povezava na celotno besedilo

4.
5.
On Groebner bases and their use in solving some practical problems
Matej Mencinger, 2013, izvirni znanstveni članek

Opis: Groebner basis are an important theoretical building block of modern (polynomial) ring theory. The origin of Groebner basis theory goes back to solving some theoretical problems concerning the ideals in polynomial rings, as well as solving polynomial systems of equations. In this article four practical applications of Groebner basis theory are considered; we use Groebner basis to solve the systems of nonlinear polynomial equations, to solve an integer programming problem, to solve the problem of chromatic number of a graph, and finally we consider an original example from the theory of systems of ordinary (polynomial) differential equations. For practical computations we use systems MATHEMATICA and SINGULAR .
Ključne besede: polynomial system of (differential) equations, integer linear programming, chromatic number of a graph, polynomial rings, Groebner basis, CAS systems
Objavljeno: 10.07.2015; Ogledov: 373; Prenosov: 27
URL Povezava na celotno besedilo

6.
Chromatic numbers of strong product of odd cycles
Janez Žerovnik, 2002, objavljeni znanstveni prispevek na konferenci

Opis: The problem of determining the chromatic numbers of the strong product of cycles is considered. A construction is given proving ▫$chi(G) = 2^p + 1$▫ for a product of ▫$p$▫ odd cycles of lengths at least ▫$2^p + 1$▫. Several consequences are discussed. In particular it is proved that the strong product of ▫$p$▫ factors has chromatic number at most ▫$2^p + 1$▫ provided that each factor admits the homomorphism to sufficiently long odd cycle ▫$C_{m_i}, ; m_i ge 2^p + 1$▫.
Ključne besede: matematika, teorija grafov, krepki produkt grafov, kromatično število, lih cikel, minimalna neodvisna dominantna množica, mathematics, graph theory, strong product, chromatic number, odd cycle, minimal independent dominating set
Objavljeno: 10.07.2015; Ogledov: 443; Prenosov: 40
URL Povezava na celotno besedilo

7.
Behzad-Vizing conjecture and Cartesian-product graphs
Blaž Zmazek, Janez Žerovnik, 2004, objavljeni znanstveni prispevek na konferenci

Opis: Dokazali smo naslednji izrek: Če Behzad-Vizingova domneva velja za grafa ▫$G$▫ in ▫$H$▫, potem velja tudi za kartezični produkt ▫$G Box H$▫.
Ključne besede: matematika, teorija grafov, kartezični produkt grafov, kromatično število, popolno kromatično število, Vizingova domneva, mathematics, graph theory, Cartesian graph product, chromatic number, total chromatic number, Vizing conjecture
Objavljeno: 10.07.2015; Ogledov: 450; Prenosov: 45
URL Povezava na celotno besedilo

8.
9.
10.
Nonrepetitive colorings of trees
Boštjan Brešar, J. Grytczuk, Sandi Klavžar, S. Niwczyk, Iztok Peterin, 2007, izvirni znanstveni članek

Opis: Barvanje vozlišč grafa ▫$G$▫ je neponavljajoče, če nobena pot v ▫$G$▫ ne tvori zaporedja sestavljenega iz dveh identičnih blokov. Najmanjše število barv, ki jih potrebujemo za tako barvanje, je Thuejevo kromatično število, označimo ga s ▫$pi(G)$▫. Slavni Thuejev izrek trdi, da je ▫$pi(P) = 3$▫ za vsako pot ▫$P$▫ z vsaj štirimi vozlišči. V članku študiramo Thuejevo kromatično število na drevesih. Glede na to,da je v tem razredu ▫$pi(T)$▫ omejeno s 4, je naš namen opisati 4-kromatična drevesa. V posebnem obravnavamo 4-kritična drevesa, ki so minimalna glede na to lastnost. Čeprav obstaja mnogo dreves ▫$T$▫ s ▫$pi(T) = 4$▫, pokažemo, da ima vsako od njih primerno veliko subdivizijo ▫$H$▫, tako da je ▫$pi(H)=3$▫. Dokaz se opira na Thuejeva zaporedja z dodatnimi lastnostmi, ki vključujejo palindromske besede. Obravnavamo tudi neponavljajoča barvanja povezav na drevesih. S podobnimi argumenti dokažemo, da ima vsako drevo subdivizijo, ki jo lahko po povezavah pobarvamo z največ ▫$Delta +1$▫ barvami brez ponavljanja na poteh.
Ključne besede: kombinatorika na besedah, neponavljajoče zaporedje, Thuejevo kromatično število, drevo, palindrom, combinatorics on words, nonrepetitive sequence, Thue chromatic number, tree, palindrome
Objavljeno: 10.07.2015; Ogledov: 433; Prenosov: 49
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.29 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici