1. On the b-chromatic number of rooted product graphsSarah Bockting-Conrad, Marko Jakovac, Michael S. Lang, 2025, izvirni znanstveni članek Opis: The b-chromatic number of a graph G was defined by Irving and Manlove in 1999 as the largest integer k for which G admits a proper coloring with k colors such that every color class (in this proper coloring) has a vertex that is adjacent to at least one vertex in every other color class. The b-chromatic number has been studied in many contexts, including for various graph products. The rooted product, defined by Godsil and McKay in 1978, is not yet among these. We find bounds for the b-chromatic number of the rooted product of two graphs in terms of the b-chromatic numbers and degrees of the factors, along with some new parameters that we define. Moreover, we give sufficient conditions for equality to hold in these bounds. We refine our results, sometimes to exact values, when one or both of the factors is a path, cycle, complete graph, star, or wheel. Ključne besede: graph theory, chromatic number, b-chromatic number Objavljeno v DKUM: 22.07.2025; Ogledov: 0; Prenosov: 11
Celotno besedilo (212,89 KB) Gradivo ima več datotek! Več... |
2. A survey on packing coloringsBoštjan Brešar, Jasmina Ferme, Sandi Klavžar, Douglas F. Rall, 2020, pregledni znanstveni članek Opis: If S=(a1,a2,...) is a non-decreasing sequence of positive integers, then an S-packing coloring of a graph G is a partition of V (G) into sets X1,X2,... such that for each pair of distinct vertices in the set Xi, the distance between them is larger than ai. If there exists an integer k such that V(G)=X1 U ... U Xk, then the partition is called an S-packing k-coloring. The S-packing chromatic number of G is the smallest k such that G admits an S-packing k-coloring. If ai=i for every i, then the terminology reduces to packing colorings and packing chromatic number. Since the introduction of these generalizations of the chromatic number in 2008 more than fifty papers followed. Here we survey the state of the art on the packing coloring, and ts generalization, the S-packing coloring. We also list several conjecres and open problems. Ključne besede: packing coloring, packing chromatic number, subcubic graph, S-packing chromatic number, computational complexity Objavljeno v DKUM: 11.03.2025; Ogledov: 0; Prenosov: 9
Celotno besedilo (98,49 KB) Gradivo ima več datotek! Več... |
3. Properties of large 2-crossing-critical graphsDrago Bokal, Markus Chimani, Alexander Nover, Jöran Schierbaum, Tobias Stolzmann, Mirko H. Wagner, Tilo Wiedera, 2022, izvirni znanstveni članek Ključne besede: crossing number, crossing-critical graph, chromatic number, chromatic index, treewidth Objavljeno v DKUM: 04.02.2025; Ogledov: 0; Prenosov: 5
Celotno besedilo (882,75 KB) Gradivo ima več datotek! Več... |
4. The independence coloring game on graphsBoštjan Brešar, Daša Mesarič Štesl, 2022, izvirni znanstveni članek Opis: We propose a new coloring game on a graph, called the independence coloring game, which is played by two players with opposite goals. The result of the game is a proper coloring of vertices of a graph G, and Alice’s goal is that as few colors as possible are used during the game, while Bob wants to maximize the number of colors. The game consists of rounds, and in round i, where i = 1, 2,, … , the players are taking turns in selecting a previously unselected vertex of G and giving it color i (hence, in each round the selected vertices form an independent set). The game ends when all vertices of G are selected (and thus colored), and the total number of rounds during the game when both players are playing optimally with respect to their goals, is called the independence game chromatic number, χig(G), of G. In fact, four different versions of the independence game chromatic number are considered, which depend on who starts a game and who starts next rounds. We prove that the new invariants lie between the chromatic number of a graph and the maximum degree plus 1, and characterize the graphs in which each of the four versions of the game invariant equals 2. We compare the versions of the independence game chromatic number among themselves and with the classical game chromatic number. In addition, we prove that the independence game chromatic number of a tree can be arbitrarily large. Ključne besede: graph, coloring, coloring game, competition-independence game, game chromatic number, tree Objavljeno v DKUM: 09.08.2024; Ogledov: 99; Prenosov: 10
Celotno besedilo (852,33 KB) Gradivo ima več datotek! Več... |
5. On b-acyclic chromatic number of a graphMarcin Anholcer, Sylwia Cichacz, Iztok Peterin, 2023, izvirni znanstveni članek Opis: Let ▫$G$▫ be a graph. We introduce the acyclic b-chromatic number of ▫$G$▫ as an analog to the b-chromatic number of ▫$G$▫. An acyclic coloring of a graph ▫$G$▫ is a map ▫$c:V(G)\rightarrow \{1,\dots,k\}$▫ such that ▫$c(u)\neq c(v)$▫ for any ▫$uv\in E(G)$▫ and the induced subgraph on vertices of any two colors ▫$i,j\in \{1,\dots,k\}$▫ induce a forest. On a set of all acyclic colorings of a graph ▫$G$▫ we define a relation whose transitive closure is a strict partial order. The minimum cardinality of its minimal element is then the acyclic chromatic number ▫$A(G)$▫ of ▫$G$▫ and the maximum cardinality of its minimal element is the acyclic b-chromatic number ▫$A_b(G)$▫ of ▫$G$▫. We present several properties of ▫$A_b(G)$▫. In particular, we derive ▫$A_b(G)$▫ for several known graph families, derive some bounds for ▫$A_b(G)$▫, compare ▫$A_b(G)$▫ with some other parameters and generalize some influential tools from b-colorings to acyclic b-colorings. Ključne besede: acyclic b-chromatic number, acyclic coloring, b-coloring Objavljeno v DKUM: 02.08.2023; Ogledov: 421; Prenosov: 16
Celotno besedilo (585,63 KB) Gradivo ima več datotek! Več... |
6. A note on the chromatic number of the square of the Cartesian product of two cyclesZehui Shao, Aleksander Vesel, 2013, drugi znanstveni članki Opis: The square ▫$G^2$▫ of a graph ▫$G$▫ is obtained from ▫$G$▫ by adding edges joining all pairs of nodes at distance 2 in ▫$G$▫. In this note we prove that ▫$chi((C_mBox C_n)^2) le 6$ for $m, n ge 40$▫. This confirms Conjecture 19 stated in [É. Sopena, J. Wu, Coloring the square of the Cartesian product of two cycles, Discrete Math. 310 (2010) 2327-2333]. Ključne besede: matematika, teorija grafov, kromatično število, kartezični produkt, označevanje grafov, kvadrat grafa, mathematics, graph theory, chromatic number, Cartesian product, graph labeling, square if a graph Objavljeno v DKUM: 10.07.2015; Ogledov: 1460; Prenosov: 85
Povezava na celotno besedilo |
7. The distinguishing chromatic number of Cartesian products of two complete graphsJanja Jerebic, Sandi Klavžar, 2010, objavljeni znanstveni prispevek na konferenci Opis: Označitev grafa ▫$G$▫ je razlikovalna, če jo ohranja le trivialni avtomorfizem grafa ▫$G$▫. Razlikovalno kromatično število grafa ▫$G$▫ je najmanjše naravno število, za katero obstaja razlikovalna označitev grafa, ki je hkrati tudi dobro barvanje. Za vse ▫$k$▫ in ▫$n$▫ je določeno razlikovalno kromatično število kartezičnih produktov ▫$K_kBox K_n$▫. V večini primerov je enako kromatičnemu številu, kar med drugim odgovori na vprašanje Choia, Hartkeja and Kaula, ali obstajajo še kakšni drugi grafi, za katere velja enakost. Ključne besede: teorija grafov, razlikovalno kromatično število, grafovski avtomorfizem, kartezični produkt grafov, graph theory, distinguishing chromatic number, graph automorphism, Cartesian product of graphs Objavljeno v DKUM: 10.07.2015; Ogledov: 1152; Prenosov: 98
Povezava na celotno besedilo |
8. A 2-parametric generalization of Sierpiński gasket graphsMarko Jakovac, 2009 Opis: Graphs ▫$S[n,k]$▫ are introduced as the graphs obtained from the Sierpiński graphs ▫$S(n,k)$▫ by contracting edges that lie in no triangle. The family ▫$S[n,k]$▫ is a previously studied class of Sierpiñski gasket graphs ▫$S_n$▫. Several properties of graphs ▫$S[n,k]$▫ are studied in particular, hamiltonicity and chromatic number. Ključne besede: teorija grafov, kromatično število, Sierpińskijev graf, graph theory, chromatic number, Sierpiński graphs, Sierpiński gasket graphs, hamiltonicity Objavljeno v DKUM: 10.07.2015; Ogledov: 1212; Prenosov: 55
Povezava na celotno besedilo |
9. Game chromatic number of Cartesian product graphsT. Bartnicki, Boštjan Brešar, J. Grytczuk, Matjaž Kovše, Z. Miechowicz, Iztok Peterin, 2008, izvirni znanstveni članek Opis: Obravnavamo igralno kromatično število ▫$chi_g$▫ kartezičnega produkta ▫$G Box H$▫ dveh grafov ▫$G$▫ in ▫$H$▫. Določimo točne vrednosti za ▫$chi_g(K_2 Box H$▫, ko je ▫$H$▫ pot, cikel ali poln graf. S pomočjo novo vpeljane "igre kombinacij" pokažemo, da igralno kromatično število ni omejeno znotraj razreda kartezičnih produktov dveh polnih dvodelnih grafov. Iz tega rezultata sledi, da igralno kromatično število ▫$chi_g(G Box H$▫ ni navzgor omejeno s kako funkcijo igralnih kromatičnih števil grafov ▫$G$▫ in ▫$H$▫. Analogen rezultat je izpeljan za igralno barvno število kartezičnih produktov grafov. Ključne besede: matematika, teorija grafov, kartezični produkt grafov, igralno kromatično število, mathematics, graph theory, Cartesian prodict, game chromatic number Objavljeno v DKUM: 10.07.2015; Ogledov: 1142; Prenosov: 280
Povezava na celotno besedilo |
10. On the packing chromatic number of Cartesian products, hexagonal lattice, and treesBoštjan Brešar, Sandi Klavžar, Douglas F. Rall, 2007, izvirni znanstveni članek Opis: Pakirno kromatično število ▫$chi_{rho}(G)$▫ grafa ▫$G$▫ je najmanjše število ▫$k$▫, tako da lahko množico vozlišč grafa ▫$G$▫ razbijemo v pakiranja s paroma različnimi širinami. Dobljenih je več spodnjih in zgornjih meja za pakirno kromatično število kartezičnega produkta grafov. Dokazano je, da pakirno kromatično število šestkotniške mreže leži med 6 in 8. Optimalne spodnje in zgornje meje so dokazane za subdividirane grafe. Obravnavana so tudi drevesa ter vpeljana monotona barvanja. Ključne besede: matematika, teorija grafov, pakirno kromatično število, kartezični produkt grafov, šestkotniška mreža, subdividiran graf, drevo, računska zahtevnost, mathematics, graph theory, packing chromatic number, Cartesian product of graphs, hexagonal lattice, subdivision graph, tree, computational complexity Objavljeno v DKUM: 10.07.2015; Ogledov: 1320; Prenosov: 163
Povezava na celotno besedilo |