2.
Prepoznavanje aktivnosti osebe iz zaporedja slik z globokimi povratnimi nevronskimi mrežami : diplomsko deloDavid Pintarič, 2019, diplomsko delo
Opis: V diplomskem delu se ukvarjamo s problemom prepoznavanja aktivnosti osebe iz zaporedja slik, pri čemer prepoznavo poskušamo izboljšati z upoštevanjem časovne komponente. To dosežemo z uporabo povratnih nevronskih mrež. Omejili smo se na naslednje aktivnosti: oseba ni v ravnovesju, se pripogiba, stoji, sedi, leži, hitro hodi, počasi hodi in pada. Pregledali smo obstoječe postopke prepoznavanja, preučili povratne nevronske mreže, pripravili množico podatkov, zasnovali algoritem, izvedli eksperimente in na koncu analizirali rezultate. Rezultati na 25 označenih videoposnetkih so pri uporabi povratne nevronske mreže pokazali 83,24 % povprečno natančnost pri uporabi tipa zaporedje v vektor in 75,53 % povprečno natančnost pri uporabi tipa zaporedje v zaporedje. Kljub temu da so dobljeni rezultati boljši od tistih, kjer ne upoštevamo časovne komponente, ugotavljamo, da povratne nevronske mreže zaradi računske zahtevnosti niso vedno najboljša izbira.
Ključne besede: računalniški vid, povratna nevronska mreža, pomnilna celica LSTM, pomnilna celica GRU, globoko učenje, detekcija oseb, prepoznavanje aktivnosti osebe
Objavljeno v DKUM: 23.11.2019; Ogledov: 1338; Prenosov: 254
Celotno besedilo (3,78 MB)