| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Monitoring the evaporation of fluids from fiber-optic micro-cell cavities
Eyal Preter, Borut Preložnik, Vlada Artel, Chaim Sukenik, Denis Đonlagić, Avi Zadok, 2013, izvirni znanstveni članek

Opis: Fiber-optic sensors provide remote access, are readily embedded within structures, and can operate in harsh environments. Nevertheless, fiber-optic sensing of liquids has been largely restricted to measurements of refractive index and absorption spectroscopy. The temporal dynamics of fluid evaporation have potential applications in monitoring the quality of water, identificationof fuel dilutions, mobile point-of-care diagnostics, climatography and more. In this work, the fiber-optic monitoring of fluids evaporation is proposed and demonstrated. Sub-nano-liter volumes of a liquid are applied to inline fiber-optic micro-cavities. As the liquid evaporates, light is refracted out of the cavity at the receding index boundary between the fluid and the ambient surroundings. A sharp transient attenuation in the transmission of light through the cavity, by as much as 50 dB and on a sub-second time scale, is observed. Numerical models for the transmission dynamics in terms of ray-tracing and wavefront propagation are provided. Experiments show that the temporal transmission profile can distinguish between different liquids.
Ključne besede: fiber-optic sensors, opto-fluidics, evaporation monitoring, optical micro-cells, fiber cavities, droplet analysis
Objavljeno: 22.06.2017; Ogledov: 170; Prenosov: 76
.pdf Celotno besedilo (551,58 KB)
Gradivo ima več datotek! Več...

Detecting karstic zones during highway construction using ground-penetrating radar
Matevž Uroš Pavlič, Blaž Praznik, 2011, izvirni znanstveni članek

Opis: Ground-penetrating radar (GPR) has been applied to determine the subsurface karstic features during the construction of the national highway in the south-eastern part of Slovenia. The highway construction is situated mostly in the dinaric karstic region with a high density of karstic features visible on the surface. Ground-penetrating radar prospecting was done in all areas where a slope was cut into the limestone bedrock. The main purpose of the survey was to map potentially hazardous zones in the highway subsurface and to detect and characterize the karst. The ground-penetrating radar method was used because of the heterogeneous nature of the karst. With its high degree of karsticifaction and geological diversity all conventional methods failed. One of GPR’s main advantages is that, while the penetration depth is limited to several meters, the obtained resolution can be on the scale of centimeters and the measured profile is continuous. Because of the ground-penetrating radar’s limitations with respect to depth, the range surveying was done simultaneously with the road construction using 200-MHz bistatic antenna on the level of the highway plane. All the 2D radargrams were constructed in 3D models where the measurements were made in raster with 2 meters between a single GPR profile. This two-meters spacing was determined as the optimal value in which only a minimal resolution-price tradeoff was made. The gathered results were tested and compared to experimental drillings and excavations so that any anomalies and reflections were calibrated. The drilling was conducted twice, first to calibrate the radargram reflections and secondly to check and confirm the calibration success. Altogether, over 30 boreholes were drilled at various previously selected locations. The data obtained from the drilling proved to be very helpful with the calibration since anomalies found during the drilling were almost exclusively (over 95%) a result of the propagation of radar waves from the limestone to an air void or from the limestone to a clay pocket. Drilling test boreholes proved to be a very useful tool for the calibration of the GPR anomalies recorded in 2D radargrams. Such a process showed a near 100 % accuracy with respect to interpreting the subsurface features, with 77% correctly interpreted as caves or clay pockets and 23% wrongly interpreted, where the interpretation was a void but it was indeed partly a clay-filled and partly an air-filled void. The completed survey also showed simultaneous surveying with GPR and road construction is a very efficient and economical way to predict various karstic features and the density of the karstic forms.
Ključne besede: karst, ground-penetrating radar, geotechnics, cavities, detection
Objavljeno: 13.06.2018; Ogledov: 142; Prenosov: 24
.pdf Celotno besedilo (756,55 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici