| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Porozni kopolimeri iz vinilestrov in tiolov kot nosilci bioloških celic
Mateja Gojznikar, 2018, magistrsko delo

Opis: Porozni polimerni materiali so vedno bolj uporabni za nanos bioloških celic in uporabo v tkivnem inženirstvu. Zato smo v magistrski nalogi pripravili porozne polimerne nosilce s pomočjo polimerizacije emulzije z visokim deležem notranje faze (HIP emulzije). Za pripravo smo izbrali nizko citotoksična monomera DVA in TT in jih ustrezno polimerizirali po principu stopenjske tiol-en foto polimerizacije. Pri pripravi HIP emulzije smo spreminjali različne parametre (količino surfaktantov, HLB vrednost surfaktantov, temperaturo vodne faze, temperaturo emulzije, razmerje monomerov) in s tem pridobili različne morfološke strukture vzorcev. Pri preučevanju vpliva dveh HLB vrednosti surfaktantov (2,31 in 3,29) in količine surfaktantov (15 vol. %, 20 vol. % in 25 vol.%), smo ugotovili, da količina surfaktanta pri posamezni HLB vrednosti vpliva na poliHIPE morfologijo in na velikost primarnih por. Pri HLB vrednosti 2,31 se s povečevanjem količine surfaktantov izboljšuje poliHIPE morfologija in nastajajo večje primarne pore. Pri HLB vrednosti 3,29 pa s povečevanjem količine surfaktantov porušimo poliHIPE morfologijo in zmanjšamo primarne pore. S spremembo temperature vodne faze na 40 °C prav tako vplivamo na morfologijo polimernega nosilca, in sicer pri večji HLB vrednosti (3,29) dobimo poliHIPE morfologijo, pri manjši HLB vrednosti (2,31) pa se izoblikuje bikontinuirna struktura. S spreminjanjem temperature emulzije nismo dosegli poliHIPE morfologije, vsi vzorci imajo bikontinuirno strukturo. Pri spreminjanju razmerja funkcionalnih skupin monomerov smo ugotovili, da primerno poliHIPE morfologijo pridobimo pri vzorcu MG7, kjer je razmerje funkcionalnih skupin monomerov 1:1. Preverili smo tudi biorazgradljivost polimernih materialov MG7 in MG8 v različnih koncentracijah NaOHaq (10-3 M, 10-4 M in 10-5 M ). Ugotovili smo, da razgradljivost pripravljenih vzorcev pada z nižanjem koncentracije NaOHaq. V 10-3 M NaOHaq se namreč razgradi 10 % vzorca, v 10-4 M NaOHaq se razgradi 6 % in v 10-5 M NaOHaq le še 3% vzorca. Opravili smo tudi karakterizacijo pripravljenih poliHIPE materialov. S FTIR spektroskopijo smo potrdili kemijsko sestavo poli(DVA-ko-TT) nosilca, s pomočjo adsorpcije/desorpcije dušika po BET metodi smo izmerili specifične površine. Izvedli smo tudi elementno analizo vzorcev, in ugotovili, da eksperimentalne vrednosti masnih deležev elementov ne odstopajo od teoretičnih vrednosti. Izmerili pa smo tudi mehanske lastnosti izbranih polimernih materialov.
Ključne besede: Tiol-en fotopolimerizacija, HIPE nosilci, HIP emulzija, porozni polimerni nosilci, nosilci za biološke celice.
Objavljeno v DKUM: 09.10.2018; Ogledov: 1565; Prenosov: 180
.pdf Celotno besedilo (3,52 MB)

2.
Polihipe materiali za rast bioloških celic pripravljeni s tiol-en polimerizacijo
Maja Sušec, 2014, doktorska disertacija

Opis: Tkivno inženirstvo je tehnika, ki temelji na regeneraciji različnih tipov celic, ki rastejo na ustrezni podlagi. V zadnjem času tkivno inženirstvo in tkivne kulture pridobivajo na pomembnosti zaradi uspešne uporabnosti v biomedicini. Tkivno inženirstvo je zelo uporabno predvsem na področju rasti tkiv, presajanja organov in na področju rekonstruktivne kirurgije. Uporaba ustreznih materialov kot matrik je ključnega pomena za tkivno inženirstvo in tudi pri oblikovanju umetne, zunajcelične matrike (podlage), ki podpira 3D tkivno tvorbo. Polimeri so primarni materiali, ki se uporabljajo za ustrezno podlago na področju tkivnega inženirstva, vključno za rast kosti, hrustanca, krvnih žil, mehurja, kože in drugih tkiv. Gre za uporabo kombinacije celic in materialov ter pripadajočih biokemijskih in fizikalno-kemijskih faktorjev za izvajanje ali nadomestilo bioloških funkcij. Za uspešno rast tkiva in razmnoževanje celic je ustrezna podlaga nujna in tako je tudi zelo pomembno, da kontroliramo morfologijo, porozno strukturo in velikost porazdelitve por ustreznega materiala. Poroznost polimernega materiala je lahko dosežena skozi različne procese, med njimi je emulzija osnova za pripravo poroznih materialov. Poleg omenjenih parametrov je znano, da je rast celic boljša na tridimenzionalni porozni podlagi. Dodatno pa je potrebno upoštevati še biokompatibilnost in biorazgradljivost podlage. Ustrezne nosilce smo pripravili tudi s pomočjo polimerov pripravljenih s pomočjo emulzij. Pripravili smo emulzije z visokim deležem notranje faze, pri čemer volumen notranje faze emulzije presega 74.05 % in tako pripravili poliHIPE materiale, ki so bili uporabljeni tudi kot substrati za tkivno inženirstvo. O poliHIP-ih je glede tkivnega inženirstva poznanega zelo malo. Ponavadi so poliHIPE materiali producirani tekom radikalne verižne polimerizacije in tako biodegradibilnost nastalega materiala lahko predstavlja problem. Klasične metode za procesiranje polimernih materialov kot so ekstruzija ali brizganje so pogosto uporabljene za proizvajanje tipičnih biokompatibilnih in biodegradabilnih materialov kot so poli(mlečna kislina) za izdelavo šivov, materiali za vezavo kosti in materiali za druge medicinske pripomočke. Na žalost pa imajo te tehnike zelo omejene zmogljivost za proizvodnjo celičnih matrik. Alternativna metoda kot je litje topila, izpiranje delcev, penjenje plinov and lepljenje vlaken imajo tudi nekatere omejitve kot so nizka sposobnost za natančno kontrolo velikosti por, geometrije por, medsebojne povezanosti por, prostorsko porazdelitev por in konstrukcijo notranjih poti v matriko (podlago). Eden od pomembnih dosežkov v tkivnem inženirstvu je bil razvoj tridimenzionalnih matrik, ki usmerjajo celice, da tvorijo funkcionalna tkiva. Nedavno poznane proizvodne tehnike poznane kot izdelava prosto oblikovanih površin (Solid Freee Form Fabrication-SFF), ali hitra izdelava prototipov (rapid prototoyping-RP), se uspešno uporabljajo za proizvodnjo kompleksnih matrik. Fotopolimerizabilen metakrilat se uporablja kot večina ostalih monomerov, ki so danes na tržišču oz. kot biokompatibilen in biodegradabilen monomer, ki je pogosta tema raziskav v zadnjem obdobju. Čeprav ima ta material številne prednosti pred PLA (poli mlečna kislina) saj na mehanske lastnosti in degradacijsko obnašanje lahko vplivamo. je kot monomer dražljiv. Zato smo razvili novo generacijo biokompatibilnih in biodegradabilnih fotopolimerov, ki temeljijo na vinilestrih in vinilkarbonatih, ki imajo enake prednosti kot (met)akrilati in se izogibajo večini slabih lastnosti. Poleg enostavne sinteze in zelo nizke monomerne citotoksičnosti, nastanejo nestrupeni razgradni produkti, ki se zlahka izločajo iz človeškega telesa. Prvi in vivo eksperimenti so takšni materiali pokazali odlično biokompatibilnost. Raziskovalno doktorsko delo je bilo osredotočeno tudi na pripravo biokompatibilnih in biorazgradljivih poroznih polimerov preko HIPE in uvedba druge hierarhične ravni v 50-100 µm preko 3D fotopolimerizacije. Preizkuï
Ključne besede: poliHIPE, tiol-ene kemija, biološke celice, fotopolimerizacija
Objavljeno v DKUM: 05.12.2014; Ogledov: 3121; Prenosov: 290
.pdf Celotno besedilo (9,56 MB)

Iskanje izvedeno v 0.02 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici