| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Enzymatic synthesis of sugar fatty acid esters in organic solvent and in supercritical carbon dioxide and their antimicrobial activity
Maja Leitgeb, Saša Šabeder, Željko Knez, 2008, izvirni znanstveni članek

Opis: Lipase-catalyzed synthesis of different sugar fatty acid esters was performed in high yields in 2-methyl-2-butanol at atmospheric pressure and in supercritical carbon dioxide (SC CO2) at 10 MPa. Influence of molecular sievesconcentration on conversion in SC CO2 was studied. Growth inhibitory effect of commercial sucrose fatty acid esters and enzymatically synthesized sucrose and fructose fatty acid esters on Gram-positive and Gram-negative micro-organisms, as well as on yeast was tested. Sucrose laurate inhibited the growth of Bacillus cereus food poisoning bacteria at a concentration of 9.375 mg/ml.
Ključne besede: biocatalysis, lipase, sugar fatty acid ester, organic solvent, cupercritical CO2, antimicrobial activity
Objavljeno: 31.05.2012; Ogledov: 1346; Prenosov: 69
URL Povezava na celotno besedilo

2.
Enzymatic reactions in dense gases
Željko Knez, 2009, pregledni znanstveni članek

Opis: The developments on applications of supercritical fluids as alternative solvents for biocatalytic processes that have taken place over the past two decades have been reviewed. An overview of process parameters influencing enzyme activity and stability, the influence of process parameters on reaction rates and productivity are presented. Applications of various types of reactors for enzymatic reaction in dense fluids, limitations of using enzymes as biocatalyst in supercritical fluids as well as future trends are presented. Main advantages of using dense gases as solvents for biocatalyzed reactions are the tunability of solvent properties and simple down stream processing features that can be readily combined with other unit operations. Although many enzymes are stable in supercritical fluids (SCFs) one should pay considerable attention to finding the correct reaction conditions for each substrate/enzyme/SCF system. One of the persistent problems is the instability and deactivation of enzymes under pressure and temperature. At present the most stable enzymes are hydrolases (lipases and esterases) for which pressure effect is lower than temperature deactivation.
Ključne besede: biocatalysis, supercritical fluids, enzyme bioreactors, heterogeneous biocatalysis
Objavljeno: 01.06.2012; Ogledov: 1375; Prenosov: 68
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici