| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
A fundamental study of the performance of X-section cast-in-place concrete single piles
Yu Wang, Yaru Lv, Dongdong Zhang, Jieying Zhou, 2016, izvirni znanstveni članek

Opis: X-section cast-in-place concrete (XCC) piles are used because they have a higher bearing capacity than circularsection cast-in-place concrete (CCC) piles of the same cross-sectional area. Although the bearing capacity of XCC piles has been studied, the performance of XCC single piles, especially for the stress-transfer mechanism dependent on the geometrical effects, is still not fully understood. This paper reports two comparative field static load tests on an XCC and a CCC single pile of the same cross-sectional area. In addition, corresponding threedimensional numerical back-analyses are performed to provide a fundamental understanding. The measured and computed results reveal that the XCC single pile has an approximately 25% higher ultimate bearing capacity than the CCC single pile. This is because the XCC single pile has an approximately 20% larger total side resistance, which is caused by a 60% larger pile perimeter and a slightly smaller unit side resistance. Lateral soil arching effects are developed, causing a non-uniform effective normal stress and a shear stress across the circumference of the XCC single pile. It is suggested that XCC single piles have a higher efficiency in terms of material saving compared with CCC single piles.
Ključne besede: X-section cast-in-place concrete pile, field static load test, three-dimensional numerical back-analysis, stresstransfer mechanism, side resistance, soil arching
Objavljeno v DKUM: 15.06.2018; Ogledov: 1462; Prenosov: 185
.pdf Celotno besedilo (485,57 KB)
Gradivo ima več datotek! Več...

2.
An estimation of the passive pressure against integral bridge abutments considering arching effects
Mojtaba Movahedifar, Jafar Bolouri Bazaz, 2013, izvirni znanstveni članek

Opis: Most civil engineering structures are subjected to cyclic loading during their service life, such as retaining walls, wave loading on offshore structures, seismic loading and the traffic loading of pavements. In the case of an integral abutment bridge (IAB), as an example, the backfill granular material is subject to slow cyclic stress and strain changes under drained conditions. These bridges are constructed so that the top deck is longitudinally continuous. In other words, IABs are joint-less bridges where the superstructure is connected with the abutment. The rigid connection enables the abutment and superstructure to act as a single structural unit, i.e., the expansion joints which are widely used in traditional bridges are removed in IABs. This removal is mainly due to the high costs of maintenance. The behavior of IABs is dominated by the cyclical temperature changes in the bridge deck. This results in the imposition of cyclical horizontal displacements to the backfill soil of the abutments. The present research is an effort to investigate the induced passive pressure on the IABs, using a laboratory model and an analytical approach. The results indicate that the passive pressure distribution is non-linear and its maximum value along the wall is dependent on the magnitude of the wall rotation and number of cycles. It seems that there are two different mechanisms for this behavior. In the above part of the wall, sand behaves as a plastic material. A decline in the passive pressure in the bottom part, however, is the result of arching.
Ključne besede: integral abutment bridge, cyclic displacement, passive pressure, arching
Objavljeno v DKUM: 14.06.2018; Ogledov: 1056; Prenosov: 144
.pdf Celotno besedilo (609,10 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici