4.
ZGODNJE NAPOVEDI STOPNJE ALFA-KISLIN V HMELJNI RASTLINI (Humulus lupulus L.) Z MODELI STROJNEGA UČENJAViljem Pavlovič, 2011, doktorska disertacija
Opis: Hmelj (Humulus lupulus L.) je ključna surovina v pivovarstvu, saj značilno vpliva na organoleptične lastnosti piva, vključno z okusom in aromo. Grenčice hmelja (alfa-kisline) so že vrsto let eden najpomembnejših parametrov kakovosti in s tem tržne vrednosti hmeljskih proizvodov v vseh državah pridelovalkah. Zgodnje napovedi vsebnosti alfa-kislin v storžkih slovenskih kultivarjev hmelja, so zato ključnega pomena tako za hmeljarje, kot tudi za trgovce s hmeljem. V pomoč slovenskim ekspertom pri ocenah letnega pridelka alfa-kislin smo zgradili modele za zgodnje napovedi vsebnosti alfa-kislin treh pomembnejših kultivarjev, ki jih gojimo v Sloveniji. Vsi trije kultivarji (Aurora, Savinjski golding in Bobek) se precej enotno odzivajo na meteorološke vplive v istem časovnem obdobju. V raziskavi so s podatki in izkušnjami sodelovali tudi raziskovalci Inštituta za hmeljarstvo in pivovarstvo Slovenije v Žalcu.
Analiza meteoroloških vplivov na območjih pridelave hmelja v Sloveniji je pokazala, da imajo močan vpliv na vsebnost alfa-kislin slovenskih kultivarjev predvsem nadpovprečno visoke temperature v obdobju nastajanja generativnih organov (r = –0,95, p < 0,001), padavine pa že v času intenzivne rasti hmeljne rastline (r = 0,94, p < 0,001), pri tem pa vpliv padavin ni linearen. Izračunali smo koeficient med logaritmirano vrednostjo skupne količine padavin od 21. maja do 22. julija in temperaturno vsoto od 18. junija do 22. julija. Soodvisnost med koeficientom (kTD) in vsebnostjo alfa-kislin modelnega kultivarja Virtual je močna (r = –0,94, p < 0,001) in statistično značilna. Precej enoten odziv kultivarjev Aurora, Savinjski golding in Bobek nam je omogočil gradnjo univerzalnega modela s pomočjo navideznega kultivarja Virtual in neodvisnih spremenljivk skupne količine padavin, temperaturnih vsot in teoretične potrebe po vodi za hmeljno rastlino.
Za preliminarno napoved vsebnosti alfa-kislin v hmelju smo razvili univerzalni model G2G2DSMO, ki ga sestavljata dva modela z različnim vplivom. Oba modela sta zgrajena z atributom temperaturnih vsot v časovnem intervalu med 18. junijem in 21. julijem (T2529). Model G2SMO vsebuje še neodvisno spremenljivko skupne količine padavin za obdobje od 21. maja do 21. julija (D2129), model G2DSMO pa neodvisno spremenljivko teoretične potrebe po vodi v istem časovnem obdobju (Dd2129).
Vpliv modela G2SMO na amalgamiran model G2G2DSMO je 60 %, s 40 % pa vpliva model G2DSMO. Povprečen model G2G2DSMO je dovolj natančen in robusten. Vrednost DW d-statistike = 1,91 dokazuje, da v modelu avtokorelacija ni prisotna. Model, ki smo ga v raziskavi razvili je v funkcijski obliki zapisan:
G2G2DSMO = 14,025 – 13,46.10-3 T2529 + 2,92.10-3 Dd2129 + 3,72.10-3.D2129.
S pomočjo značilnih konstant kultivarjev Aurora = 1,45, Savinjski_golding = 0,62 in Bobek = 0,92, ki smo jih izračunali, smo dobili napovedi vsebnosti alfa-kislin za posamezne kultivarje prve skupine. Vrednosti napovedanih odvisnih spremenljivk (Ki) so močno korelirane (rVirtual = 0,95, rAurora = 0,93, rSavinjski golding = 0,92, rBobek = 0,90) z njihovimi pravimi vrednostmi (Ci), ki so bile določene s kemijskimi analizami. Vse korelacije so statistično značilne pri stopnji tveganja manjši od 0,1 %.
Model, ki smo ga v nalogi razvili, bo lahko služil kot osnova za nadaljevanje dela v smeri izgradnje ekspertnega sistema za zgodnje ocene vsebnosti alfa-kislin v hmelju. V prihod-nosti bo možno vključiti v model še nove kultivarje hmelja, pri čemer bo potrebno dodatno izračunati njihove modelne konstante.
Ključne besede: : napovedni model, strojno učenje, hmeljna rastlina, alfa-kisline, sušni management
Objavljeno v DKUM: 31.05.2011; Ogledov: 4945; Prenosov: 364
Celotno besedilo (2,71 MB)