1. Grafi, ki dosežejo enakost v vizingovi domnevi : magistrsko deloAnamarija Lakner, 2022, magistrsko delo Opis: Vizing je leta 1968 postavil domnevo, da je dominantno število kartezičnega produkta dveh grafov večje ali enako produktu njunih dominantnih števil. V magistrskem delu obravnavamo družine grafov, ki v tej domnevi dosežejo enakost.
V prvem delu magistrske naloge smo navedli pojme in trditve, ki jih potrebujemo za razumevanje glavnega problema naloge.
Drugo poglavje se nanaša na različne meje dominantnega števila kartezičnega produkta dveh grafov in družine grafov, ki zadoščajo Vizingovi domnevi.
V tretjem poglavju obravnavamo družine grafov, ki pod določenimi pogoji dosežejo enakost v Vizingovi domnevi, ter znane rezultate podamo v tabeli. Ključne besede: dominantno število, dominantna množica, Vizingova domneva, enakost v Vizingovi domnevi Objavljeno v DKUM: 28.10.2022; Ogledov: 571; Prenosov: 48 Celotno besedilo (568,89 KB) |
2. Vizing's conjecture: a survey and recent resultsBoštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2012, pregledni znanstveni članek Opis: Vizingova domneva iz leta 1968 trdi, da je dominacijsko število kartezičnega produkta dveh grafov vsaj tako veliko, kot je produkt dominacijskih števil faktorjev. V članku naredimo pregled različnih pristopov k tej osrednji domnevi iz teorije grafovske dominacije. Ob tem dokažemo tudi nekaj novih rezultatov. Tako so na primer pokazane nove lastnosti minimalnega protiprimera, dokazana je tudi nova spodnja meja za produkte grafov brez induciranega ▫$K_{1,3}$▫ s poljubnimi grafi. Skozi celoten članek so obravnavani pripadajoči odprti problemi, vprašanja in sorodne domneve. Ključne besede: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture Objavljeno v DKUM: 10.07.2015; Ogledov: 1362; Prenosov: 90 Povezava na celotno besedilo |
3. Vizing's conjecture: a survey and recent resultsBoštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2009 Opis: Vizing's conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained and a lower bound for the domination number is proved for products of claw-free graphs with arbitrary graphs. Open problems, questions and related conjectures are discussed throughout the paper. Ključne besede: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture Objavljeno v DKUM: 10.07.2015; Ogledov: 1365; Prenosov: 99 Povezava na celotno besedilo |
4. Fair reception and Vizing's conjectureBoštjan Brešar, Douglas F. Rall, 2009, izvirni znanstveni članek Opis: Vpeljemo koncept poštenega sprejema grafa, ki je povezan z njegovim dominantnim številom. Dokažemo, da za vse grafe, ki imajo pošten sprejem velikosti njihovega dominantnega števila, velja Vizingova domneva o dominantnem številu kartezičnega produkta grafov, s čimer posplošimo dobro znan rezultat Barcalkina in Germana o razstavljivih grafih. S kombiniranjem nav sega koncepta in rezultata Aharonija, Bergerja in Ziva dobimo alternativen dokaz izreka Aharonija in Szaba, ki pravi, da tetivni grafi zadoščajo Vizingovi domnevi. Predstavimo tudi novo neskončno družino grafov, ki zadoščajo Vizingovi domnevi. Ključne besede: matematika, teorija grafov, dominacija, kartezični produkt grafov, Vizingova domneva, mathematics, graph theory, domination, Cartesian product of graphs, Vizing's conjecture Objavljeno v DKUM: 10.07.2015; Ogledov: 1254; Prenosov: 113 Povezava na celotno besedilo |
5. Domination gameBoštjan Brešar, Sandi Klavžar, Douglas F. Rall, 2009 Opis: The domination game played on a graph ▫$G$▫ consists of two players, Dominator and Staller who alternate taking turns choosing a vertex from ▫$G$▫ such that whenever a vertex is chosen the graph in as few steps as possible and Staller wishes to delay the process as much as possible. The game domination number ▫$gamma_g(G)$▫ is the number of vertices chosen when Dominator starts the game and the Staller-start game domination number ▫$gamma'_g(G)$▫ when Staller starts the game. It is proved that for any graph ▫$G$▫, ▫$gamma(G) le gamma_g(G) le 2gamma(G) - 1$▫, and that all possible values can be realized. It is also proved that for any graph ▫$G$▫, ▫$gamma_g(G) - 1 le gamma'_g(G) le gamma_g(G) + 2$▫, and that most of the possibilities for mutual values of ▫$gamma_g(G)$▫ and ▫$gamma'_g(G)$▫ can be realized. A connection with Vizing's conjecture is established and several problems and conjectures stated. Ključne besede: teorija grafov, teorija iger, dominantnost, Vizingova domneva, graph theory, game theory, domination, domination game, game domination number, Vizing's conjecture Objavljeno v DKUM: 10.07.2015; Ogledov: 1963; Prenosov: 31 Povezava na celotno besedilo |
6. On integer domination in graphs and Vizing-like problemsBoštjan Brešar, Michael A. Henning, Sandi Klavžar, 2006, izvirni znanstveni članek Opis: Nadaljujemo študij ▫${k}$▫-dominantnih funkcij v grafih (ali, kot bomo tudi rekli, celoštevilske dominacije), ki so jo začeli Domke, Hedetniemi, Laskar in Fricke. Za celo število ▫$k ge 1$▫ je funkcija ▫$f: V(G) to {0,1,...,k}$▫, definirana na točkah grafa ▫$G$▫, ▫${k}$▫-dominantna funkcija, če je vsota funkcijskih vrednosti na vsaki zaprti okolici vsaj ▫$k$▫. Teža ▫${k}$▫-dominantne funkcije je vsota funkcijskih vrednosti po vseh točkah. ▫${k}$▫-dominantno število grafa ▫$G$▫ je najmanjša teža ▫${k}$▫-dominantne funkcije na ▫$G$▫. Obravnavamo ▫${k}$▫-dominantno število kartezičnega produkta grafov, predvsem probleme povezane s slavno Vizingovo domnevo. Študirana je tudi povezava med ▫${k}$▫-dominantnim številom in drugimi tipi dominacijskih parametrov. Ključne besede: matematika, teorija grafov, ▫${k}$▫-dominantna funkcija, celoštevilska dominacija, Vizingova domneva, kartezični produkt grafov, mathematics, graph theory, ▫${k}$▫-dominating function, integer domination, Vizing's conjecture, Cartesian product Objavljeno v DKUM: 10.07.2015; Ogledov: 1280; Prenosov: 68 Povezava na celotno besedilo |
7. Behzad-Vizing conjecture and Cartesian-product graphsBlaž Zmazek, Janez Žerovnik, 2004, objavljeni znanstveni prispevek na konferenci Opis: We prove the following theorem: if the Behzad-Vizing conjecture is true for graphs ▫$G$▫ and ▫$H$▫, then is it true for the cartesian product ▫$G Box H$▫.
Ključne besede: matematika, teorija grafov, kartezični produkt grafov, kromatično število, popolno kromatično število, Vizingova domneva, mathematics, graph theory, Cartesian graph product, chromatic number, total chromatic number, Vizing conjecture Objavljeno v DKUM: 10.07.2015; Ogledov: 1548; Prenosov: 87 Povezava na celotno besedilo |
8. NEENAKOSTI VIZINGOVEGA TIPA ZA RAZLIČNE DOMINACIJSKE INVARIANTEVika Koban, 2012, diplomsko delo Opis: Dominacija na grafih je intenzivno raziskovana veja v teoriji grafov. Leta 1963 je Vizing postavil domnevo, da je dominantno število kartezičnega produkta dveh grafov kvečjemu večje od produkta njunih dominantih števil. Mnogo delnih rezultatov je bilo dokazanih, vendar pa je le-ta še vedno eden izmed največjih odprtih problemov v študiju dominacije na grafih. V tem diplomskem delu so v ospredju obravnavani najbolj znani izreki Vizingovega tipa za različne dominacijske invariante.
Na začetku predstavimo nekaj dejstev o dominaciji na kartezičnem produktu. Opišemo znan Clark-Suenov rezultat Vizingovega tipa in t.i. razstavljive grafe, za katere Vizingova domneva drži.
Drugi del se nanaša na pet dominacijskih invariant; totalno, celoštevilsko, zgornjo, deljeno dominantno število in dominacijo po parih. Predstavljeni so izreki Vizingovega tipa za posamezne dominacijske parametre, kot na primer izrek za deljeno-dominantno število, Ho-jev izrek o totalnem dominantnem številu in izrek Vizingovega tipa za zgornje dominantno število. Ključne besede: dominantna množica, dominantno število, Vizingova domneva, dominacijske invariante Objavljeno v DKUM: 11.09.2012; Ogledov: 2123; Prenosov: 253 Celotno besedilo (715,88 KB) |