SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
2.
Impact of salt reduction on the number of microorganisms and a sensory analysis for Kranjska sausages during their shelf-life
Livija Tušar, Irena Leonida Kropf, Avrelija Cencič, 2016, izvirni znanstveni članek

Opis: Salt is an important ingredient in the production of meat product. Any reduction of salt requires a special treatment. This study was conducted to evaluate the effect of salt reduction on the growth of microorganisms in Kranjska sausages during their shell-life and to carry out a sensory assessment. The 18 lots of sausages were prepared under salt-reduced (1.6%) and control (2.3%) salt concentrations, directly on the production line. A total of 85 sausages were analysed and the data were used for the comparisons of groups (ANOVA) and to detect the significant variables (polynomial models) influenced on the total number of microorganisms (TNMs). The significant differences were determined between the lots (representing the microbiological status of the stuffing), between the salt-reduced samples and control samples, and between the different humidity levels. The correlations and significant relationships were determined between the TNMs and the lots, the salt concentrations, and the relative humidity. The polynomial models were to general to be used for the prediction. For sensory analysis implemented on 40th day 18 sausages were assessed. The reduction of salt resulted in lower scores in the sensory evaluation. The less-salted sausages contained more microorganisms.
Ključne besede: Kranjska sausage, reduction of salt, sensory evaluation, models, relative humidity
Objavljeno: 14.11.2017; Ogledov: 194; Prenosov: 19
.pdf Celotno besedilo (815,34 KB)

3.
Impact of curvature on nematic topological defects
Luka Mesarec, 2018, doktorska disertacija

Opis: Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems' microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. There are strong evidences that in physics the fields are fundamental entities of nature and not particles. If this is the case then topological defects (TDs) might play the role of fundamental particles. An adequate testing ground to study and gain fundamental understanding of TDs are nematic liquid crystals. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We analyze the impact of extrinsic and intrinsic curvature on positions of topological defects (TDs) in two-dimensional (2D) nematic films. We demonstrate that both these curvature contributions are commonly present and are expected to be weighted by comparable elastic constants. A simple Landau-de Gennes approach in terms of tensor nematic order parameter is used to numerically demonstrate impact of the curvatures on position of TDs on 2D ellipsoidal nematic shells. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs (defect,antidefect) on curved surfaces. Furthermore, we estimate a critical depinning threshold to form pairs (defect,antidefect) using the electrostatic analogy. Finally, we show how one could efficiently switch among qualitatively different structures by using a relative volume of ordered shells, which represents a relatively simple naturally accessible control parameter. In doctoral thesis, we developed theoretical model of erythrocyte membrane by using a hybrid Helfrich-Landau type mesoscopic approach, taking into account in-plane membrane ordering. We demonstrate that the derived extrinsic membrane energy term, which strongly depends on the local orientations of the molecules, is essential for the predicted broadening of the range of the relative volumes corresponding to the stable discocyte shapes, which is otherwise very narrow if only intrinsic curvature energy term dominates.
Ključne besede: Topological defects, Continuum fields, Nematic liquid crystals, Biological membranes, Nematic shells, Landau-de Gennes formalism, Topological charge, Nanoparticles, Gaussian curvature, Electrostatic analogy, Intrinsic curvature, Extrinsic curvature, Crystal growth nucleation, Relative volume
Objavljeno: 09.03.2018; Ogledov: 317; Prenosov: 35
.pdf Celotno besedilo (23,66 MB)

4.
Shear modulus of a saturated granular soil derived from resonant-column tests
H. Patiño, E. Martínez, Jesús González, A. Soriano, 2017, izvirni znanstveni članek

Opis: This paper presents the results of 120 determinations of the shear modulus (G) of a saturated granular soil (20–40 Ottawa sand) in different conditions of relative density (Dr), effective consolidation pressure (σ’ c) and level of torsional excitation (Te). The equipment used was a resonant-column apparatus manufactured by Wykeham Farrance and the tests were performed with relative density values of 20, 40, 60 and 80%, effective consolidation pressures of 50, 100, 150, 200, 250 and 300 kPa, and torsional excitations of 0.025, 0.05, 0.1, 0.2 and 0.4 volts (V), leading to shear strains (γ) between 0.002% and 0.023%. The results led to very simple empirical expressions for the shear modulus as a function of the angular strain for different effective consolidation pressures and void-ratio values.
Ključne besede: resonant column, resonant frequency, shear modulus, relative density, effective consolidation pressure, dynamic shear modulus
Objavljeno: 18.06.2018; Ogledov: 99; Prenosov: 8
.pdf Celotno besedilo (1,31 MB)

Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici