| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
NARX Deep Convolutional Fuzzy System for Modelling Nonlinear Dynamic Processes
Marjan Golob, 2023, izvirni znanstveni članek

Opis: This paper presents a new approach for modelling nonlinear dynamic processes (NDP). It is based on a nonlinear autoregressive with exogenous (NARX) inputs model structure and a deep convolutional fuzzy system (DCFS). The DCFS is a hierarchical fuzzy structure, which can overcome the deficiency of general fuzzy systems when facing high dimensional data. For relieving the curse of dimensionality, as well as improving approximation performance of fuzzy models, we propose combining the NARX with the DCFS to provide a good approximation of the complex nonlinear dynamic behavior and a fast-training algorithm with ensured convergence. There are three NARX DCFS structures proposed, and the appropriate training algorithm is adapted. Evaluations were performed on a popular benchmark—Box and Jenkin’s gas furnace data set and the four nonlinear dynamic test systems. The experiments show that the proposed NARX DCFS method can be successfully used to identify nonlinear dynamic systems based on external dynamics structures and nonlinear static approximators.
Ključne besede: process identification, input-output modelling, NARX model, decomposed fuzzy system, hierarchical fuzzy system, deep convolutional fuzzy system
Objavljeno v DKUM: 30.11.2023; Ogledov: 422; Prenosov: 12
.pdf Celotno besedilo (5,86 MB)
Gradivo ima več datotek! Več...

2.
Samosprožilno mrežno vodenje z nelinearnim modelom na osnovi globokega učenja : magistrsko delo
Sebastjan Vogrinčič, 2023, magistrsko delo

Opis: Magistrska naloga opisuje modeliranje nelinearnih dinamičnih sistemov in implementacijo samosprožilnega dogodkovnega vodenja na sistemu zračne levitacije z namenom reševanja sodobnih problemov vodenja, kot je preobremenjenost omrežja. Najprej smo vzpostavili komunikacijo med sistemom in računalnikom z namenom priprave podatkov. Sledila je faza globokega učenja in validacija modela. Na koncu smo načrtali ustrezen algoritem, ki posodablja izhod regulatorja glede na predikcijo modela. Z magistrskim delom smo predvsem dokazali delovanje obravnavanega vodenja na hitrem nelinearnem in nestabilnem sistemu. Ugotovili smo, da je zanesljivost takega vodenja predvsem odvisna od natančnosti modela. Samosprožilno vodenje je lahko riskantno, zato je za industrijsko aplikacijo potrebno vpeljati dodatne varnostne mehanizme.
Ključne besede: samosprožilno vodenje, dogodkovno proženje, nelinearni model, globoko učenje, NARX.
Objavljeno v DKUM: 05.10.2023; Ogledov: 298; Prenosov: 52
.pdf Celotno besedilo (4,37 MB)

Iskanje izvedeno v 0.07 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici