| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 36
Na začetekNa prejšnjo stran1234Na naslednjo stranNa konec
1.
Razvoj napovednega modela multivariatnih časovnih vrst uporabniških storitev : diplomsko delo
Sandi Pečečnik, 2023, diplomsko delo

Opis: V sklopu diplomskega dela predstavimo več nevronskih mrež, ki jih optimiziramo, pri čemer raziščemo ustrezne arhitekture, metrike, funkcije in druge pomembne lastnosti za uporabo v napovednih modelih multivariantnih časovnih vrst. Raziščemo najpomembnejše probleme povezane z razvojem napovednih nevronskih mrež. Naslovimo reševanje treh specifičnih realnih problemov, za reševanje katerih smo predlagali arhitekture nevronskih mrež. Izdelali smo še skalabilno spletno aplikacijo, ki omogoča enostavnejšo uporabo naučenih modelov nevronskih mrež.
Ključne besede: časovne vrste, nevronske mreže, globoko učenje, storitve, arhitekture globokega učenja
Objavljeno v DKUM: 05.10.2023; Ogledov: 224; Prenosov: 20
.pdf Celotno besedilo (1,66 MB)

2.
Samosprožilno mrežno vodenje z nelinearnim modelom na osnovi globokega učenja : magistrsko delo
Sebastjan Vogrinčič, 2023, magistrsko delo

Opis: Magistrska naloga opisuje modeliranje nelinearnih dinamičnih sistemov in implementacijo samosprožilnega dogodkovnega vodenja na sistemu zračne levitacije z namenom reševanja sodobnih problemov vodenja, kot je preobremenjenost omrežja. Najprej smo vzpostavili komunikacijo med sistemom in računalnikom z namenom priprave podatkov. Sledila je faza globokega učenja in validacija modela. Na koncu smo načrtali ustrezen algoritem, ki posodablja izhod regulatorja glede na predikcijo modela. Z magistrskim delom smo predvsem dokazali delovanje obravnavanega vodenja na hitrem nelinearnem in nestabilnem sistemu. Ugotovili smo, da je zanesljivost takega vodenja predvsem odvisna od natančnosti modela. Samosprožilno vodenje je lahko riskantno, zato je za industrijsko aplikacijo potrebno vpeljati dodatne varnostne mehanizme.
Ključne besede: samosprožilno vodenje, dogodkovno proženje, nelinearni model, globoko učenje, NARX.
Objavljeno v DKUM: 05.10.2023; Ogledov: 175; Prenosov: 33
.pdf Celotno besedilo (4,37 MB)

3.
Prepoznava invazivnih polžev z uporabo globokega učenja : diplomsko delo
Kristjan Herodež, 2023, diplomsko delo

Opis: Zaključno delo se osredotoča na podvejo umetne inteligence, ki se imenuje strojno učenje. V zaključnem delu predstavljamo uporabo in implementacijo strojnega učenja na različnih področjih. Znotraj zaključnega dela se podrobneje osredotočamo na pametno kmetijstvo, katerega osrednja tematika v tej nalogi je odkrivanje škodljivcev, ki so v našem primeru polži Arion rufus. Kot rešitev problema je predstavljeno globoko učenje oz. uporaba konvolucijskih nevronskih mrež. V ta namen omenimo tudi različne pristope za učenje modelov računalniškega vida. Rešitev smo našli v pristopu YOLO (You only look once) v katerem smo izdelali naš model vida in ga primerjali s podobno študijo.
Ključne besede: Arion rufus, Globoko učenje, Pametno kmetijstvo, Umetna inteligenca
Objavljeno v DKUM: 05.10.2023; Ogledov: 158; Prenosov: 17
.pdf Celotno besedilo (3,43 MB)

4.
Preslikava stila satelitskih posnetkov s pomočjo generativnih nasprotniških nevronskih mrež : magistrsko delo
Mitja Lakič, 2023, magistrsko delo

Opis: V magistrskem delu raziskujemo problematiko preslikave stila satelitskih posnetkov z uporabo generativnih nasprotniških nevronskih mrež (GAN). Najprej predstavimo osnovno strukturo nevronskih mrež, nato podrobneje opišemo generativne modele. Namen magistrskega dela je preveriti učinkovitost teh modelov pri preslikavi satelitskih posnetkov v stil zemljevida, kjer primerjamo dva različna GAN modela, in sicer Pix2Pix, ki spada med pogojne modele, in CycleGAN, ki je predstavnik cikličnih modelov. V okviru eksperimenta primerjamo pridobljene rezultate z uporabo teh modelov, kjer smo tudi preizkusili preslikavo v obratni smeri, torej iz zemljevida v stil satelitskega posnetka. Rezultati so pokazali, da je mogoče satelitske posnetke uspešno preslikati v stil zemljevida, kjer pogojni modeli na splošno zagotavljajo boljše rezultate, vendar so zelo odvisni od arhitekture omrežja. Magistrsko delo zaključimo z analizo rezultatov in odgovori na raziskovalna vprašanja.
Ključne besede: generativne nasprotniške mreže, globoko učenje, preslikava stila, satelitski posnetki, zemljevidi
Objavljeno v DKUM: 28.03.2023; Ogledov: 424; Prenosov: 76
.pdf Celotno besedilo (5,49 MB)

5.
Napredne tehnologije in metodologije za pametno proizvodnjo : magistrsko delo
Ana Bedrač, 2023, magistrsko delo

Opis: V magistrski nalogi je predstavljen koncept pametne proizvodnje. Predstavljene so ključne značilnosti, ki po mnenju različnih avtorjev oblikujejo pametno proizvodnjo. Obravnavanih je več primerov oz. konceptov pametne proizvodnje, pri čemer se podrobneje osredotočamo na opredelitev pametne proizvodnje po avtorju A. Kusiaku. Predstavljene so ključne tehnologije in metodologije, ki so že v uporabi ali pa imajo velik potencial, da se bodo še uveljavile. Magistrska naloga vključuje sodobne trende na področju pametne proizvodnje. Izpostavljene so tehnologije in metodologije, ki so trenutno najsodobnejše, še posebej pa napredne proizvodne tehnologije, strojno učenje in tudi blokovne verige v povezavi z ekonomijo strojev. Nekatere od predstavljenih tehnologij in metodologij so obravnavane na praktičnih primerih.
Ključne besede: pametna proizvodnja, umetna inteligenca, strojno učenje, globoko učenje, blokovne verige, ekonomija strojev, veliki podatki, kibernetsko-fizični sistem, digitalni dvojček, internet stvari, pametni materiali.
Objavljeno v DKUM: 09.03.2023; Ogledov: 491; Prenosov: 88
.pdf Celotno besedilo (2,50 MB)

6.
Orodja za manipulacijo videoposnetkov z nevronskimi mrežami : diplomsko delo
Jure Farič, 2022, diplomsko delo

Opis: V diplomskem delu smo se ukvarjali s teoretičnim pregledom metod uporabljenih pri generiranju globoko ponarejenih medijev in prikazu delujočega primera globoko ponarejenega videoposnetka. Teoretično smo pregledali pristope za manipulacijo slik in videoposnetkov z modeli generativnih nevronskih mrež, ter izdelali delujoč in realističen primer globoko ponarejenega videoposnetka. Uporabili smo obstoječe videoposnetke z nevronskimi mrežami in primerjali rezultate manipulacije s pravimi videoposnetki. V praktičnem delu smo predstavili korake po katerih lahko izdelamo deepfake videoposnetek z orodjem DeepFaceLab.
Ključne besede: globoke nevronske mreže, globoko učenje, globoko ponarejeni videoposnetki, manipulacija slik, manipulacija videoposnetkov, diplomske naloge
Objavljeno v DKUM: 09.02.2023; Ogledov: 734; Prenosov: 182
.pdf Celotno besedilo (1014,84 KB)

7.
Detekcija napak na odlitkih z globokim učenjem : magistrsko delo
Tomo Pšeničnik, 2022, magistrsko delo

Opis: Cilj magistrske naloge je preučiti detekcijo napak na odlitkih z uporabo konvolucijskih nevronskih mrež. Predstavljena je klasifikacija slik dobrih in slabih odlitkov, ki temelji na globokem učenju. Za učenje nevronske mreže smo uporabili obstoječo zbirko podatkov, ki vsebuje več kot 7000 slik. Za izdelavo programa smo uporabili okolje Matlab s pomočjo Deep learning toolbox vmesnika. Izdelali smo model konvolucijske nevronske mreže, izvedli učenje in prikazali rezultate. V drugem delu smo rezultate želeli izboljšati, zato smo se poslužili tehnike s prenosnim učenjem. Našim potrebam smo prilagodili obstoječo AlexNet arhitekturo, naložili zbirko podatkov in izvedli učenje nevronske mreže. Na koncu prikažemo rezultate kot je klasifikacijska točnost modela. Delovanje modela preizkusimo še na testni množici slik, katere niso bile vključene v proces učenja.
Ključne besede: Globoko učenje, detekcija napak, klasifikacija, konvolucijska nevronska mreža, odlitek
Objavljeno v DKUM: 09.12.2022; Ogledov: 499; Prenosov: 37
.pdf Celotno besedilo (3,25 MB)

8.
Primerjava metod napada na globoke nevronske mreže z nasprotniškimi primeri in pristopov k zaščiti pred njimi : magistrsko delo
Robi Novak, 2022, magistrsko delo

Opis: Globoke nevronske mreže imajo ranljivosti, kot so nasprotniški primeri - neopazne namerne popačitve vhodnih podatkov, ki povzročijo neželeno spremembo izhoda. Ker so nasprotniški primeri prenosljivi, lahko popačitev tvorimo v scenariju črne škatle, brez da bi poznali strukturo ali uteži napadene mreže. V našem delu primerjamo več pristopov k napadu in zaščiti. Robustnost modela ovrednotimo glede na prepričanost v napačno klasifikacijo ter glede na statistično porazdelitev amplitud nasprotniških popačitev. Rezultati kažejo, da so amplitude uspešnih napadov tipično za en velikostni razred višje, če je napad izveden po scenariju črne škatle. Robustnost modela je odvisna od klasifikacijskega problema, arhitekture mreže ter pristopa k zaščiti. Za najbolj učinkovita napada sta se v scenariju bele škatle izkazala napada BIM in MI-FGSM, v scenariju črne škatle pa napada MI-FGSM in FGSM. Najučinkovitejša pristopa k zaščiti sta bila diskretizacija ter virtualno nasprotniško učenje. Pokazali smo tudi, da moramo za verodostojen preizkus učinkovitosti nasprotniškega učenja uporabiti napad, ki ni bil uporabljen v procesu učenja.
Ključne besede: globoko učenje, nasprotniški primeri, nevronske mreže, strojno učenje
Objavljeno v DKUM: 06.07.2022; Ogledov: 733; Prenosov: 126
.pdf Celotno besedilo (45,09 MB)
Gradivo ima več datotek! Več...

9.
Analiza učinkovitosti učenja s prenosom znanja pri detekciji objektov : magistrsko delo
Mitja Žalik, 2022, magistrsko delo

Opis: Zaradi nedefiniranosti procesov odločanja globokih nevronskih mrež in njihovega dolgotrajnega učenja predstavlja določitev prenesenega znanja ključen izziv pri implementaciji učinkovite detekcije objektov na novih domenah. Preneseno znanje opredeljuje struktura plasti nevronske mreže, nad katerimi izgradimo nov model, ter izbira plasti, ki jim med učenjem zamrznemo vrednosti uteži. V magistrskem delu analiziramo vpliv števila zamrznjenih plasti na uspešnost učenja s prenosom znanja. V prvem delu opišemo tehnike prenosa znanja ter podamo formalno definicijo detekcije objektov, pri čemer opredelimo poznane metode in izpostavimo ključne izzive, povezane z njimi. Nato predstavimo izveden eksperiment, v katerem primerjamo uspešnost štirih konfiguracij pri prenosu znanja na modelu YOLOv4 na štiri različne ciljne domene. Ugotovimo, da so pri različnih ciljnih domenah uspešne različne konfiguracije, ki so odvisne od stopnje podobnosti izvorne in ciljne domene ter plasti izvornega modela, na kateri je določena značilka izluščena. Čeprav predstavljeni rezultati kažejo nemožnost predvidevanja optimalne konfiguracije prenosa znanja, izveden eksperiment nakazuje, da je učenje tudi v primeru neoptimalnega prenosa znanja uspešnejše od učenja brez prenosa znanja.
Ključne besede: učenje s prenosom znanja, prenos znanja, detekcija objektov, obdelava videoposnetkov, globoko učenje
Objavljeno v DKUM: 07.06.2022; Ogledov: 809; Prenosov: 167
.pdf Celotno besedilo (16,36 MB)

10.
Primerjava različnih načinov učenja globokih nevronskih mrež v avtonomni vožnji : magistrsko delo
Andraž Skupek, 2022, magistrsko delo

Opis: V magistrskem delu opisujemo avtonomno vožnjo, algoritme za učenje avtonomnih vozil ter algoritme za razpoznavo prometnih znakov. Za implementacijo smo uporabili dva različna načina učenja avtonomnih vozil, in sicer posnemajoče učenje – za implementacijo katerega smo uporabili konvolucijske nevronske mreže, ter samoojačitveno učenje, kjer uporabljamo nevronsko mrežo, model pa se uči iz lastnih napak. Ob implementaciji avtonomnih vozil smo s pomočjo konvolucijskih nevronskih mrež implementirali tudi modele za razpoznavo prometnih znakov. Omenjene modele smo nato združili z algoritmi avtonomne vožnje in s tem dobili vozilo, ki se je sposobno v simulatorju samostojno premikati ter pospeševati ali zavirati glede na razpoznani prometni znak. Modele obeh načinov avtonomne vožnje testiramo na osmih različnih progah, kjer hitrost vožnje upravljamo tudi s pomočjo razpoznavalnika prometnih znakov. Modeli so uspešni, če uspešno prevozijo celotno progo. Rezultati naših modelov so uspešni, saj je kar nekaj modelov uspešno premagalo vseh osem prog.
Ključne besede: Avtonomna vožnja, globoko učenje, nevronske mreže, konvolucijske nevronske mreže
Objavljeno v DKUM: 14.03.2022; Ogledov: 868; Prenosov: 173
.pdf Celotno besedilo (2,41 MB)

Iskanje izvedeno v 0.19 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici