| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Fibonaccijeva dimenzija resonančnih grafov katakondenziranih benzenoidnih grafov
Janja Rebernik, 2016, magistrsko delo

Opis: Tema magistrskega dela je Fibonaccijeva dimenzija resonančnih grafov katakondenziranih benzenoidnih grafov. V delu predstavimo katakondenzirane benzenoidne grafe in problem določitve Fibonaccijeve dimenzije grafa, pri tem namenimo posebno pozornost določitvi Fibonaccijeve dimenzije resonančnih grafov katakondenziranih benzenoidnih grafov, za katere je opisan in implementiran tudi algoritem, ki izračuna Fibonaccijevo dimenzijo. V sklopu magistrskega dela je predstavljen in implementiran tudi algoritem, ki določi kanonično vložitev resonančnega grafa katakondenziranega benzenoidnega grafa v hiperkocko. Delo je razdeljeno na pet delov. V prvem delu so opisani osnovni pojmi in definicije. V drugem delu so predstavljeni katakondenzirani benzenoidni grafi in algoritem, ki določi kanonično vložitev resonančnega grafa katakondenziranega benzenoidnega grafa v hiperkocko. V tretjem delu je predstavljen problem določitve Fibonaccijeve dimenzije grafa. V četrtem delu pa ta problem omejimo na katakondenzirane benzenoidne grafe ter predstavimo algoritem za izračun Fibonaccijeve dimenzije resonančnih grafov katakondenziranih benzenoidnih grafov, ki ima linearno časovno zahtevnost. V petem delu opišemo implementacijo omenjenih algoritmov v programskem jeziku C++ in na primeru pokažemo delovanje programa.
Ključne besede: benzenoidni graf, katakondenzirani benzenoidni graf, Fibonaccijeva dimenzija, 1-faktor, resonančni graf
Objavljeno: 12.05.2016; Ogledov: 625; Prenosov: 98
.pdf Celotno besedilo (1,32 MB)

2.
Fibonacci dimension of the resonance graphs of catacondensed benzenoid graphs
Aleksander Vesel, 2013, izvirni znanstveni članek

Opis: The Fibonacci dimension ▫$text{fdim}(G)$▫ of a graph ▫$G$▫ was introduced [in S. Cabello, D. Eppstein, S. Klavžar, The Fibonacci dimension of a graph Electron. J. Combin., 18 (2011) P 55, 23 pp] as the smallest integer ▫$d$▫ such that ▫$G$▫ admits an isometric embedding into ▫$Gamma_d$▫, the ▫$d$▫-dimensional Fibonacci cube. The Fibonacci dimension of the resonance graphs of catacondensed benzenoid systems is studied. This study is inspired by the fact, that the Fibonacci cubes are precisely the resonance graphs of a subclass of the catacondensed benzenoid systems. Our results show that the Fibonacci dimension of the resonance graph of a catacondensed benzenoid system ▫$G$▫ depends on the inner dual of ▫$G$▫. Moreover, we show that computing the Fibonacci dimension can be done in linear time for a graph of this class.
Ključne besede: Fibonaccijeva dimenzija, benzenoidni sistemi, resonančni grafi, algoritem, Fibonacci dimension, benzenoid systems, resonance graphs, algorithm
Objavljeno: 10.07.2015; Ogledov: 616; Prenosov: 68
URL Povezava na celotno besedilo

3.
On the Fibonacci dimension of partial cubes
Aleksander Vesel, 2009

Opis: The Fibonacci dimension fdim▫$(G)$▫ of a graph ▫$G$▫ was introduced in [S. Cabello, D. Eppstein and S. Klavžar, The Fibonacci dimension of a graph, submitted] as the smallest integer ▫$d$▫ such that $G$ admits an isometric embedding into ▫$Q_d$▫, the ▫$d$▫-dimensional Fibonacci cube. A somewhat new combinatorial characterization of the Fibonacci dimension is given, which enables more comfortable proofs of some previously known results. In the second part of the paper the Fibonacci dimension of the resonance graphs of catacondensed benzenoid systems is studied. This study is inspired by the fact, that the Fibonacci cubes are precisely the resonance graphs of a subclass of the catacondensed benzenoid systems. The main result shows that the Fibonacci dimension of the resonance graph of a catacondensed benzenoid system ▫$G$▫ depends on the inner dual of ▫$G$▫. Moreover, we show that computing the Fibonacci dimension can be done in linear time for a graph of this class.
Ključne besede: matematika, teorija grafov, Fibonaccijeva dimenzija, delne kocke, resonančni grafi, benzenoidni sistemi, mathematics, graph theory, Fibonacci dimension, partial cubes, resonance graphs, benzenoid systems
Objavljeno: 10.07.2015; Ogledov: 554; Prenosov: 21
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.11 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici