| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Principi modeliranja v logistiki : e-gradivo za predmet
Janez Žerovnik, 2015, drugo učno gradivo

Ključne besede: definicije, Eulerjevi grafi, Hamiltonovi grafi, drevesa, barvanje grafov, algoritmi, teorija grafov, logistika, učbeniki
Objavljeno v DKUM: 07.10.2024; Ogledov: 0; Prenosov: 8
.pdf Celotno besedilo (3,66 MB)
Gradivo ima več datotek! Več...

2.
Reševanje problemov z uporabo teorije grafov : na študijskem programu Predmetni učitelj
Katarina Verhnjak, 2023, magistrsko delo

Opis: Pogosto vprašanje pri poučevanju matematike je njena aplikativnost v vsakdanjem življenju. Četudi magistrsko delo ni pedagoške narave, je sestavljeno tako, da se bralec na začetku pouči o teoriji grafov, tekom dela pa to teorijo pretvori v realne probleme. Prvi del magistrskega dela je povzetek najbolj pomembnih definicij in izrekov, brez katerih je razumevanje jezika teorije grafov nemogoče. Prikazani so zgledi družin grafov in dve posebni kategoriji grafov - Eulerjevi in Hamiltonovi grafi. Sledi uporabnost dreves, predvsem je poudarek posvečen vpetim drevesom in problemu iskanja najmanjšega vpetega drevesa v grafih. S tem znanjem lahko namreč načrtujemo optimalna železniška ali namakalna omrežja. Sledi poglavje povezanosti, kjer lahko prevedemo teorijo na problem konstrukcije zanesljivega komunikacijskega omrežja. Nazadnje pa je zbranih nekaj poljudnih nalog iz sklopa razvedrilne matematike za širši razpon bralcev, kjer lahko preverijo razumevanje teorije, saj le z njimi dvomljivcem v matematično uporabnost podamo odgovor.
Ključne besede: aplikacije teorije grafov, Eulerjevi grafi, Hamiltonovi grafi, drevesa, povezanost
Objavljeno v DKUM: 26.04.2023; Ogledov: 647; Prenosov: 62
.pdf Celotno besedilo (3,21 MB)

3.
Matematične uganke v teoriji grafov
Maja Javornik, 2019, magistrsko delo

Opis: V magistrskem delu je predstavljenih več učencem zanimivih matemati\v cnih ugank. Najprej obravnavamo različne matematične uganke skozi zgodovino vse od magi\v cnih kvadratov do ugank novej\v sega \v casa kot je rubikova kocka. Nato se osredotočimo na teorijo grafov in predstavimo ikozaedersko igro, problem Köningsber\v ski mostov, problem prečkanja reke brez mostov in problem \v stirih konjev. Kot uvod v obravnavo kitajskih prstanov predstavimo legendo o stolpu iz Brahme in vpeljemo Hanojske stolpe. Doka\v zemo optimalno re\v sitev Hanojskega stolpa z $n \in{\mathbb{N}}_0$ diski. Med drugimi predstavimo variacijo Hanojskega stolpa, ki se imenuje zamenjevalni Hanojski stolp in predstavimo zgodovino kitajskih prstanov. Nazadnje problem kitajskih prstanov podrobneje raziščemo in doka\v zemo formulo za najhitrejšo rešitev problema.
Ključne besede: Kitajski prstani, Hanojski stolpi, Hamiltonovi grafi, Eulerjevi grafi, ravninski grafi
Objavljeno v DKUM: 23.01.2020; Ogledov: 1458; Prenosov: 208
.pdf Celotno besedilo (3,34 MB)

4.
Eulerjevi in Hamiltonovi grafi pri pouku v osnovni in srednji šoli
Kristina Plavec, 2017, magistrsko delo

Opis: V magistrskem delu obravnavam izbrana poglavja iz teorije grafov in sicer Eulerjeve in Hamiltonove grafe. V prvem delu navajam potrebne definicije, trditve in izreke z dokazi. Podani so tudi osnovni pojmi, ki se navezujejo na ti dve vsebini. V drugem delu pa podajam primer priprave za obravnavo izbranih vsebin v osnovni in srednji šoli. Priprave vsebujejo vsebinsko-metodične napotke ter napotke glede izbire učne oblike in metode.
Ključne besede: teorija grafov v osnovnošolskem in srednješolskem izobraževanju, Eulerjevi grafi, Hamiltonovi grafi
Objavljeno v DKUM: 19.07.2017; Ogledov: 1767; Prenosov: 172
.pdf Celotno besedilo (2,34 MB)

5.
Uporaba teorije grafov pri igrah in drugih realnih problemih
Matic Ber, 2016, diplomsko delo

Opis: V diplomskem delu so opisane miselne igre, katerih rešitve lahko naravno podamo s pomočjo teorije grafov. Pogledamo nekaj najbolj znanih zagonetk in jih predstavimo v obliki dobro raziskanih ter znanih grafov. Ti med drugimi vključujejo polne dvodelne grafe, hiperkocke in zgodovinsko znan graf Königsbergških mostov. Vpeljemo možno posplošitev zagonetk na poljubno dimenzijo in podamo zmagovalno strategijo. V delu se podrobneje obravnavajo tudi določeni gospodarski problemi in uporaba teorije grafov v realnem svetu na različnih področjih kot so optimizacijski problemi, minimiziranje cene v ekonomiji, problemi v prometu in teoriji koristnosti. Postavimo vprašanje, ali ima izbran problem sprejemljivo rešitev in če je možno, predlagamo algoritem, ki privede do rešitve.
Ključne besede: Teorija grafov, miselne igre, Eulerjevi grafi, Hamiltonovi grafi.
Objavljeno v DKUM: 09.11.2016; Ogledov: 1849; Prenosov: 227
.pdf Celotno besedilo (8,68 MB)

Iskanje izvedeno v 0.15 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici