| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
LEIBNIZ-NEWTONOVA FORMULA IN NJENE POSPLOŠITVE
Sara Topler, 2012, diplomsko delo

Opis: V diplomskem delu obravnavamo Leibniz-Newtonovo formulo in njene posplošitve. Pojem Riemannovega oz. določenega integrala je vpeljan s pomočjo Darbouxovih in Riemannovih vsot, pri čemer je poudarjena ekvivalentnost omenjenih pristopov. V tretjem poglavju so predstavljeni potrebni pogoji za integrabilnost funkcij, v četrtem pa ena izmed povezav med določenimi integrali in primitivnimi funkcijami. Sledi pomemben matematični rezultat Leibniza in Newtona, t. i. Leibniz-Newtonova formula, poznana tudi kot osnovni izrek analize. V nadaljevanju obravnavamo posplošitve te formule; pri prvi obliki nadomestimo obojestranski odvod z desnim odvodom, v drugi nastopa Schwarzov odvod, tretja posplošitev Leibniz-Newtonove formule pa se nanaša na funkcije, ki izpolnjujejo Lipschitzev pogoj. V zadnjem poglavju je navedenih nekaj primerov, kjer postane računanje določenega integrala s pomočjo Leibniz-Newtonove formule precej lažje kot računanje po definiciji določenega integrala. Ključna sta primera, ki ponazarjata napake, ki nastanejo pri uporabi rešitev iz tablic nedoločenih integralov na neustreznih intervalih. Pokazali smo, kako se tem napakam uspešno izogniti.
Ključne besede: Darbouxove vsote, Riemannove vsote, Riemannov integral, določeni integral, primitivna funkcija, desni odvod, Schwarzov odvod, Lipschitzev pogoj, Leibniz-Newtonova formula, napake pri uporabi Leibniz-Newtonove formule.
Objavljeno: 23.04.2012; Ogledov: 1423; Prenosov: 77
.pdf Celotno besedilo (1,03 MB)

Iskanje izvedeno v 0.02 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici