| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Extending the protection ability and life cycle of medical masks through the washing process
Julija Volmajer Valh, Tanja Pušić, Mirjana Čurlin, Ana Knežević, 2023, izvirni znanstveni članek

Opis: The reuse of decontaminated disposable medical face masks can contribute to reducing the environmental burden of discarded masks. This research is focused on the effect of household and laboratory washing at 50 °C on the quality and functionality of the nonwoven structure of polypropylene medical masks by varying the washing procedure, bath composition, disinfectant agent, and number of washing cycles as a basis for reusability. The barrier properties of the medical mask were analyzed before and after the first and fifth washing cycle indirectly by measuring the contact angle of the liquid droplets with the front and back surface of the mask, further by measuring air permeability and determining antimicrobial resistance. Additional analysis included FTIR, pH of the material surface and aqueous extract, as well as the determination of residual substances—surfactants—in the aqueous extract of washed versus unwashed medical masks, while their aesthetic aspect was examined by measuring their spectral characteristics. The results showed that household washing had a stronger impact on the change of some functional properties, primarily air permeability, than laboratory washing. The addition of the disinfectant agent, didecyldimethylammonium chloride, contributes to the protective ability and supports the idea that washing of medical masks under controlled conditions can preserve barrier properties and enable reusability.
Ključne besede: medical masks, washing, detergent, didecyldimethylammonium chloride, air permeability, antimicrobial activity, residuals
Objavljeno v DKUM: 15.03.2024; Ogledov: 199; Prenosov: 7
.pdf Celotno besedilo (3,67 MB)
Gradivo ima več datotek! Več...

Degradation of polyvinyl chloride (PVC) waste with supercritical water
Maja Čolnik, Petra Kotnik, Željko Knez, Mojca Škerget, 2022, izvirni znanstveni članek

Opis: The chemical degradation of PVC waste in SCW between 400 and 425 °C and reaction times from 30 to 60 min was studied. The PVC waste in SCW decomposed into the gas, oil, water soluble, and solid phases. The highest yield of the gas and oil phases was achieved at the temperature of 425 °C after 60 min. By increasing the reaction time at 400 °C, the yield of chloride ions in the aqueous phase increased and reached the maximum at 60 min. The gas and oil phases contained many valuable compounds similar to crude oil. Alkanes and chloroalkanes; alkenes, alicyclic, and aromatic hydrocarbons; as well as alcohols were the main groups of hydrocarbons in the oil phase, while the gas phase contained only light hydrocarbons (C1–C6), CO2, and small amounts of H2. This confirmed that the largest chlorine content remains in the aqueous phase and does not pass into the gas phase. It can be concluded that SCW presents effective decomposition media for plastic waste.
Ključne besede: polyvinyl chloride, supercritical water, chemical recycling, plastic waste
Objavljeno v DKUM: 18.09.2023; Ogledov: 428; Prenosov: 20
.pdf Celotno besedilo (1,09 MB)
Gradivo ima več datotek! Več...

4-vinylbenzyl chloride based porous spherical polymer supports derived from water-in-oil-in-water emulsion
Dejan Štefanec, Peter Krajnc, 2005, izvirni znanstveni članek

Opis: 4-Vinylbenzyl chloride (VBC) based water-in-oil-in-water emulsions with 85% pore volume and 70% VBC in organic phase were prepared and polymerised by free radical polymerisation. Porous spherical particles of diameters between 50 and 150 m were obtained and their morphological structure and reactivity studied by FTIR spectroscopy, elemental analysis, optical microscopy, scanning electron microscopy and mercury intrusion porosimetry. Strong influence of the suspension stabiliser, namely poly(N-vinylpyrrolidone) (PVP), on the particle form was found. Diameters of spherical polymers particles depend on the PVP concentration, being larger with the lower concentration of PVP. Reactivity of novel supports was demonstrated by the reactions with piperidine, piperazine, tris(hydroxymethyl)methylamine and tris(2-aminoethyl)amine, all yielding corresponding amine derivatives.
Ključne besede: multiple emulsions, polymer supports, 4-vinylbenzyl chloride, solid phase synthesis, solid phase synthesis, high internal phase emulsions
Objavljeno v DKUM: 01.06.2012; Ogledov: 2056; Prenosov: 40
URL Povezava na celotno besedilo

Iskanje izvedeno v 3.81 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici