| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Fast random rewiring and strong connectivity impair subthreshold signal detection in excitable networks
Vladislav Volman, Matjaž Perc, 2010, izvirni znanstveni članek

Opis: We study dynamical responses in locally paced networks consisting of diffusively coupled excitable units with dynamically adjusted connectivity. It is shown that for weak subthreshold pacing, excessive or strong connectivity impairs the reliable response of a network to the stimulus. Fast random dynamic rewiring of the network also acts detrimentally on signal detection by enforcing a faster relaxation upon the paced unit. Our results indicate that efficient signal processing on excitable complex networks requires tight correspondence between the dynamics of connectivity and the dynamical processes taking place on the network. This, in turn, suggests the existence of 'function-follows-form' principles for systems described within this framework.
Ključne besede: neuronal dynamics, complex networks, coevolution, cognition
Objavljeno v DKUM: 03.07.2017; Ogledov: 1321; Prenosov: 352
.pdf Celotno besedilo (1,36 MB)

2.
Gap junctions and epileptic seizures - two sides of the same coin?
Vladislav Volman, Matjaž Perc, Maxim Bazhenov, 2011, izvirni znanstveni članek

Opis: Electrical synapses (gap junctions) play a pivotal role in the synchronization of neuronal ensembles which also makes them likely agonists of pathological brain activity. Although large body of experimental data and theoretical considerations indicate that coupling neurons by electrical synapses promotes synchronous activity (and thus is potentially epileptogenic), some recent evidence questions the hypothesis of gap junctions being among purely epileptogenic factors. In particular, an expression of inter-neuronal gap junctions is often found to be higher after the experimentally induced seizures than before. Here we used a computational modeling approach to address the role of neuronal gap junctions in shaping the stability of a network to perturbations that are often associated with the onset of epileptic seizures. We show that under some circumstances, the addition of gap junctions can increase the dynamical stability of a network and thus suppress the collective electrical activity associated with seizures. This implies that the experimentally observed post-seizure additions of gap junctions could serve to prevent further escalations, suggesting furthermore that they are a consequence of an adaptive response of the neuronal network to the pathological activity. However, if the seizures are strong and persistent, our model predicts the existence of a critical tipping point after which additional gap junctions no longer suppress but strongly facilitate the escalation of epileptic seizures. Our results thus reveal a complex role of electrical coupling in relation to epileptiform events. Which dynamic scenario (seizure suppression or seizure escalation) is ultimately adopted by the network depends critically on the strength and duration of seizures, in turn emphasizing the importance of temporal and causal aspects when linking gap junctions with epilepsy.
Ključne besede: epilepsy, nonlinear dynamics, electrical synapses, coupling, synchronization
Objavljeno v DKUM: 19.06.2017; Ogledov: 1119; Prenosov: 413
.pdf Celotno besedilo (858,25 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.07 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici