| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Robne in geodetske množice v grafih
Vesna Lebar, 2015, magistrsko delo

Opis: V magistrskem delu so obravnavane lastnosti in povezave med posameznimi robnimi množicami grafa, ki jih sestavljajo robna, ekscentrična, periferna, konturna in ekstremna vozlišča grafa. Zanimale nas bodo predvsem povezave med robnimi in geodetskimi množicami grafa, posebej se bomo posvetili preučevanju konturne množice grafa. V prvem poglavju so zapisani osnovni pojmi in definicije iz teorije grafov, ki jih bomo potrebovali v nadaljevanju. V drugem poglavju definiramo tipe robnih množic, navedemo osnovne lastnosti le-teh in dokažemo dva realizacijska izreka, ki govorita o obstoju poljubnega grafa pri podanih kardinalnostih različnih skupin robnih množic. V tretjem poglavju navedemo rezultate, ki pravijo, da je konturna množica tetivnih, razdaljno hereditarnih, 3-SDH in HHD-prostih grafov geodetska množica. Obravnavamo tudi konturno množico dvodelnih grafov in dokažemo, da za vsak diameter $kgeq 8$ obstaja dvodelni graf, katerega konturna množica ni geodetska. V zadnjem razdelku obravnavamo konturne in geodetske množice delnih kock.
Ključne besede: robne množice, geodetska množica, konturna množica
Objavljeno: 05.11.2015; Ogledov: 580; Prenosov: 58
.pdf Celotno besedilo (1,41 MB)

Iskanje izvedeno v 0.02 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici