| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Selektivno zaznavanje in odstranjevanje plevela
Urban Kenda, 2020, diplomsko delo

Opis: V diplomskem delu smo spoznali robota Farmbeast, različne pristope k škropljenju, osnovne principe iz področja strojnega vida in uporabo robotskega operacijskega sistema. Na podlagi novopridobljenega znanja smo ustvarili sistem, ki je s strojnim vidom sposoben ločevati plevel med ozko- in širokolistnim plevelom. Rezultat prepoznave pa predstavlja vhodni podatek za novo razvito orodje, s katerim je omogočeno škropljenje z dvema različnima fitofarmacevtskima pripravkoma, glede na vrsto plevela. Za prepoznavo sta bila razvita dva različna algoritma, ki omogočata ločevanje plevela in sta bila testirana na 30 vzorcih. Test je pokazal, da prvi način v 93,3 % uspešno loči ozkolisten plevel in je 53,3 % uspešen pri ločevanju širokolistnega plevela, drugi način pa obe vrsti plevela loči 93,3 % uspešno.
Ključne besede: plevel, škropljenje, strojni vid
Objavljeno: 03.11.2020; Ogledov: 137; Prenosov: 42
.pdf Celotno besedilo (3,75 MB)

Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici