| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Effect of drying parameters on physiochemical and sensory properties of fruit powders processed by PGSS-, vacuum- and spray-drying
Urban Feguš, Uroš Žigon, Marcus Petermann, Željko Knez, 2015, izvirni znanstveni članek

Opis: Aim of this experimental work was to investigate the possibility of producing fruit powders without employing drying aid and to investigate the effect of drying temperature on the final powder characteristics. Raw fruit materials (banana puree, strawberry puree and blueberry concentrate) were processed using three different drying techniques each opera- ting at different temperature conditions: vacuum-drying (–27–17 °C), spray-drying (130–160 °C) and PGSS-drying (112–152 °C). Moisture content, total colour difference, antioxidant activity and sensory characteristics of the proces- sed fruit powders were analysed. The results obtained from the experimental work indicate that investigated fruit pow- ders without or with minimal addition of maltodextrin can be produced. Additionally, it was observed that an increase in process temperature results in a higher loss of colour, reduced antioxidant activity and intensity of the flavour profile.
Ključne besede: particles from gas saturated solutions drying, vacuum-drying, spray-drying, sensory evaluation, fruit powders
Objavljeno: 18.08.2017; Ogledov: 710; Prenosov: 305
.pdf Celotno besedilo (249,24 KB)
Gradivo ima več datotek! Več...

Process design for flavour encapsulation into carbohydrate melts using high pressure homogenizer
Urban Feguš, 2016, doktorska disertacija

Opis: The aim of the research project was to develop encapsulated flavourings suitable for the final food applications such as chewing gums, instant teas and confectionary products. For this purpose that water soluble particles with particle size distribution 400-1500 µm and flavour loading up to 30 wt. % should be developed. In order to produce encapsulates with desired physical properties research work was divided into three project phases. The scope of Phase 1 was to select suitable carrier materials and to perform preliminary experiments using laboratory scale process set-up. Different carbohydrates (maltodextrin, simple sugars and sugar syrups) were tested and selected according to their physical characteristics and their process performance. Afterwards preliminary experiments were performed by using laboratory scale set-up. Observations were used for defining process parameters for the design and construction of the pilot plant. Phase 2 covered design and development of the pilot plant for flavour encapsulation while In Phase 3 different process parameters were tested. In the first part influence of the process parameters (processing temperature, homogenizing pressure, mass flow, temperature of the cooling media, retention time in the cooling media and ratio between cooling media and product) on the encapsulation efficiency was investigated. Experiments were performed according to the Design of Experiments (DoE) analysed using analysis of covariance (ANCOVA). Process temperature, pressure at second homogenization step and residence time in cooling media had significant effect on the encapsulation efficiency while pressure at first homogenizing step, mass flow, temperature of the cooling media and ratio between product and cooling media were nonsignificant. Increase in the process temperature (T>130 °C) resulted in paste-like product with increased moisture content up to 13,3 wt.% which was not suitable for further processing. On the other hand samples processed at lower temperature (T<130 °C) resulted in crystalline-like structure with low moisture content. Low flavour retention (<4,5 %) was observed within all samples. Results obtained by ANCOVA were used for further optimization of the process parameters (e.g. homogenizing pressure and the retention time in the cooling media). Maximum flavour load of 3,5 % was observed regardless the homogenizing pressure. Low encapsulation efficiency (η<35 %) was related to poor emulsion stability. Additionally, effect of expansion pressure on the particle size distribution was investigated. It was observed that particle size distribution was little affected by varying expansion pressure (nozzle diameter). All formulation showed similar particle size distribution in-between 40-440 µm. In the last section effect of the emulsifier, flavouring properties and carrier were studied. Emulsifiers with different HLB values were tested in order to increase encapsulation efficiency. Flavourings were selected on the basis of their composition (polarity and volatility). For the encapsulation experiments mentha arvensis oil, orange oil and compounded pineapple flavouring were used. As an alternative carrier material erythritol was used. Addition of emulsifier improved flavour retention for samples containing mentha arvensis oil, while no affect was observed within samples containing orange oil and pineapple flavouring due to the volatility and diffusion of active compounds from matrix to surrounding environment.
Ključne besede: encapsulation, carbohydrate melts, flavouring, high pressure homogenizer
Objavljeno: 25.07.2016; Ogledov: 1555; Prenosov: 96
.pdf Celotno besedilo (4,56 MB)

Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici