| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Gradnja uravnoteženih evolucijskih klasifikacijskih dreves : magistrsko delo
Tadej Lahovnik, 2024, magistrsko delo

Opis: Uspešnost odločitvenih dreves temelji na predpostavki, da učni podatki za vsak razred vključujejo enako količino informacij. Pri nesorazmerni porazdelitvi razredov so klasifikatorji pristransko usmerjeni k večinskim razredom. Zaradi majhnega števila vzorcev manjšinskih razredov klasifikatorji niso zmožni ustreznega usvajanja znanja, kar vodi do slabšega posploševanja in prekomernega prileganja. V okviru zaključnega dela smo razvili več algoritmov za gradnjo uravnoteženih evolucijskih dreves, ki se osredotočajo na reševanje izzivov, povezanih z nesorazmerno porazdelitvijo razredov. Rezultati eksperimenta kažejo, da uravnoteženost evolucijskih dreves ne prispeva k izboljšanju klasifikacije v primerjavi s tradicionalnimi metodami.
Ključne besede: evolucijski algoritem, odločitvena drevesa, klasifikacija, neuravnoteženi podatki
Objavljeno v DKUM: 06.02.2025; Ogledov: 0; Prenosov: 39
.pdf Celotno besedilo (2,85 MB)

2.
Klasifikacija glasbenega žanra glede na spektrogram zvočnega posnetka : diplomsko delo
Tadej Lahovnik, 2022, diplomsko delo

Opis: V diplomskem delu smo se poglobili v izdelavo različnih tipov spektrogramov in klasifikacijo slik z uporabo konvolucijskih nevronskih mrež. Zanimalo nas je, ali je možno zanesljivo napovedati žanr zvočnega posnetka glede na spektrogram, ki mu pripada. Tekom razvoja smo ustvarili tri različne tipe spektrogramov. Za vsak tip smo ustvarili ločen klasifikacijski model, nato pa smo iz vseh treh modelov sestavili klasifikacijski ansambel. Tako smo dobili najbolj zanesljive rezultate. Klasifikacijo smo nato ovrednotili s številnimi metrikami, kjer nas je najbolj zanimala sama točnost klasifikacije. Iz matrike zmede smo izčrpali najpogostejše napake pri klasifikaciji.
Ključne besede: klasifikacija, spektrogram, strojno učenje, nevronske mreže, glasbeni žanr
Objavljeno v DKUM: 20.10.2022; Ogledov: 3264; Prenosov: 73
.pdf Celotno besedilo (1,50 MB)

Iskanje izvedeno v 0.08 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici