1.
Gradnja uravnoteženih evolucijskih klasifikacijskih dreves : magistrsko deloTadej Lahovnik, 2024, magistrsko delo
Opis: Uspešnost odločitvenih dreves temelji na predpostavki, da učni podatki za vsak razred vključujejo enako količino informacij. Pri nesorazmerni porazdelitvi razredov so klasifikatorji pristransko usmerjeni k večinskim razredom. Zaradi majhnega števila vzorcev manjšinskih razredov klasifikatorji niso zmožni ustreznega usvajanja znanja, kar vodi do slabšega posploševanja in prekomernega prileganja. V okviru zaključnega dela smo razvili več algoritmov za gradnjo uravnoteženih evolucijskih dreves, ki se osredotočajo na reševanje izzivov, povezanih z nesorazmerno porazdelitvijo razredov. Rezultati eksperimenta kažejo, da uravnoteženost evolucijskih dreves ne prispeva k izboljšanju klasifikacije v primerjavi s tradicionalnimi metodami.
Ključne besede: evolucijski algoritem, odločitvena drevesa, klasifikacija, neuravnoteženi podatki
Objavljeno v DKUM: 06.02.2025; Ogledov: 0; Prenosov: 39
Celotno besedilo (2,85 MB)