SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Poincarejeva metrika hiperbolične ravnine
Petra Peklar, 2009, diplomsko delo

Opis: V pričujoči diplomski nalogi je na podlagi polravninskega Poincaréjevega modela hiperbolične geometrije definirana in raziskana Poincaréjeva metrika hiperbolične ravnine. V drugem poglavju so na podlagi obravnavanega modela definirani in raziskani osnovni pojmi in definicije hiperbolične ravnine, ki so utemeljeni s pomočjo elementov iz evklidske geometrije. V tretjem poglavju je sistematično definirana in raziskana Poincaréjeva hiperbolična funkcija dolžine, ki je ponazorjena s primerom definicije hiperboličnega obsega hiperboličnega kroga. Dokazani sta tudi pomembni posledici hiperboličnega aksioma o vzporednosti, povezani z vsoto notranjih kotov hiperboličnega trikotnika in relacijo skladnosti v hiperbolični geometriji. V četrtem poglavju je sistematično definirana in raziskana Poincaréjeva hiperbolična funkcija ploščine hiperboličnih večkotnikov, ki je ponazorjena s primerom definicije hiperbolične ploščine hiperboličnega kroga. Na primeru hiperbolične ploščine in obsega hiperboličnega kroga je utemeljena povezava med hiperbolično in evklidsko geometrijo, ki nastopi kot mejna vrednost hiperbolične geometrije.
Ključne besede: hiperbolična geometrija, polravninski Poincaréjev model, Poincaréjeva hiperbolična funkcija dolžine, Poincaréjeva hiperbolična funkcija ploščine
Objavljeno: 22.05.2009; Ogledov: 2237; Prenosov: 159
.pdf Celotno besedilo (1,83 MB)

2.
Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici