1. How long can one bluff in the domination game?Boštjan Brešar, Paul Dorbec, Sandi Klavžar, Gašper Košmrlj, 2017, izvirni znanstveni članek Opis: The domination game is played on an arbitrary graph ▫$G$▫ by two players, Dominator and Staller. The game is called Game 1 when Dominator starts it, and Game 2 otherwise. In this paper bluff graphs are introduced as the graphs in which every vertex is an optimal start vertex in Game 1 as well as in Game 2. It is proved that every minus graph (a graph in which Game 2 finishes faster than Game 1) is a bluff graph. A non-trivial infinite family of minus (and hence bluff) graphs is established. Minus graphs with game domination number equal to 3 are characterized. Double bluff graphs are also introduced and it is proved that Kneser graphs ▫$K(n,2)$▫, za ▫$n \ge 6$▫, are double bluff. The domination game is also studied on generalized Petersen graphs and on Hamming graphs. Several generalized Petersen graphs that are bluff graphs but not vertex-transitive are found. It is proved that Hamming graphs are not double bluff. Ključne besede: domination game, game domination number, bluff graphs, minus graphs, generalized Petersen graphs, Kneser graphs, Cartesian product of graphs, Hamming graphs Objavljeno v DKUM: 09.05.2017; Ogledov: 1348; Prenosov: 451 Celotno besedilo (56,60 KB) Gradivo ima več datotek! Več... |
2. Some results on total domination in direct products of graphsPaul Dorbec, Sylvain Gravier, Sandi Klavžar, Simon Špacapan, izvirni znanstveni članek Opis: Upper and lower bounds on the total domination number of the direct product ofgraphs are given. The bounds involve the ▫$\{2\}$▫-total domination number, the total 2-tuple domination number, and the open packing number of the factors. Using these relationships one exact total domination number is obtained. An infinite family of graphs is constructed showing that the bounds are best possible. The domination number of direct products of graphs is also bounded from below. Ključne besede: mathematics, graph theory, direktni produkt, total domination, ▫$k$▫-tuple domination, open packing, domination Objavljeno v DKUM: 31.03.2017; Ogledov: 1234; Prenosov: 416 Celotno besedilo (156,67 KB) Gradivo ima več datotek! Več... |
3. Vizing's conjecture: a survey and recent resultsBoštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2012, pregledni znanstveni članek Opis: Vizingova domneva iz leta 1968 trdi, da je dominacijsko število kartezičnega produkta dveh grafov vsaj tako veliko, kot je produkt dominacijskih števil faktorjev. V članku naredimo pregled različnih pristopov k tej osrednji domnevi iz teorije grafovske dominacije. Ob tem dokažemo tudi nekaj novih rezultatov. Tako so na primer pokazane nove lastnosti minimalnega protiprimera, dokazana je tudi nova spodnja meja za produkte grafov brez induciranega ▫$K_{1,3}$▫ s poljubnimi grafi. Skozi celoten članek so obravnavani pripadajoči odprti problemi, vprašanja in sorodne domneve. Ključne besede: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture Objavljeno v DKUM: 10.07.2015; Ogledov: 1362; Prenosov: 90 Povezava na celotno besedilo |
4. Vizing's conjecture: a survey and recent resultsBoštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2009 Opis: Vizing's conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained and a lower bound for the domination number is proved for products of claw-free graphs with arbitrary graphs. Open problems, questions and related conjectures are discussed throughout the paper. Ključne besede: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture Objavljeno v DKUM: 10.07.2015; Ogledov: 1365; Prenosov: 99 Povezava na celotno besedilo |