SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
A result concerning derivations in prime rings
Maja Fošner, Nina Peršin, 2013, izvirni znanstveni članek

Opis: A classical result of Herstein asserts that any Jordan derivation on a prime ring of characteristic different from two is a derivation. It is our aim in this paper to prove the following result, which is in the spirit of Herstein's theorem. Let ▫$R$▫ be a prime ring with ▫$text{char}(R) = 0$▫ or ▫$4 < text{char}(R)$▫, and let ▫$D colon R to R$▫ be an additive mapping satisfying either the relation ▫$D(x^3) = D(x^2)x + x^2D(x)$▫ or the relation ▫$D(x^3) = D(x)x^2 + xD(x^2)$▫ for all ▫$x in R$▫. In both cases ▫$D$▫ is a derivation.
Ključne besede: prakolobar, polprakolobar, odvajanje, jordansko odvajanje, jordansko trojno odvajanje, funkcijska identiteta, prime ring, semiprime ring, derivation, Jordan derivation, Jordan triple derivation, functional identity
Objavljeno: 10.07.2015; Ogledov: 460; Prenosov: 21
URL Povezava na celotno besedilo

2.
Posebne funkcionalne enačbe na prakolobarjih
Nina Peršin, 2013, doktorska disertacija

Opis: V doktorski disertaciji so obravnavane funkcionalne enačbe, ki so v zvezi z odvajanji, centralizatorji in sorodnimi preslikavami na prakolobarjih. Med slovenskimi matematiki se je s tem področjem matematike v osemdesetih letih prejšnjega stoletja začel prvi ukvarjati J. Vukman, sledili so M. Brešar, B. Zalar, B. Hvala in v novejšem času M. Fošner, D. Benkovič, D. Eremita, I. Kosi-Ulbl in A. Fošner. Osnovno sredstvo pri reševanju tovrstnih funkcionalnih enačb je uporaba teorije funkcijskih identitet. Nekoliko natančneje pojasnimo omenjene pojme. Aditivna preslikava D, ki slika poljuben kolobar R vase, je odvajanje, če velja D(xy) = D(x)y + xD(y) za vsak par x, y iz R in je jordansko odvajanje, če velja D(x^2)=D(x)x +xD(x). Očitno je, da je vsako odvajanje tudi jordansko odvajanje, obratno pa v splošnem ne velja. I. N. Herstein je leta 1957 dokazal, da je vsako jordansko odvajanje na prakolobarju s karakteristiko različno od dva, odvajanje. V doktorski disertaciji se najprej osredotočimo na funkcionalne enačbe, ki so v zvezi z odvajanji. Obravnavali smo funkcionalni enačbi D(x^3=D(x^2)x + x^2D(x) in D(x^3=D(x)x^2+ xD(x^2),kjer je D aditivna preslikava, ki slika prakolobar s primernimi omejitvami glede karakteristike vase. Dokazali smo, da je D odvajanje. Nadalje poiščemo tudi rešitev funkcionalne enačbe 2D(x^(m+n+1))=(m+n+1)(x^mD(x)x^n+x^nD(x)x^m), kjer sta m in n fiksni naravni števili in D neničelna aditivna preslikava, ki slika prakolobar s primernimi omejitvami glede karakteristike vase. Dokažemo, da je D odvajanje in R komutativen kolobar. V tretjem poglavju so obravnavane funkcionalne enačbe, ki so v zvezi s centralizatorji. Aditivna preslikava T, ki slika poljuben kolobar R vase, je levi (desni) centralizator, če je T(xy)=T(x)y (T(xy)=xT(y)) za vsak par x, y iz R. V prvem podpoglavju tega razdelka je obravnavana funkcionalna enačba 2T(x^(m+n+1))=x^mT(x)x^n +x^nT(x)x^m na prakolobarju s primernimi omejitvami glede karakteristike, kjer sta sta m in n fiksni nenegativni celi števili in m+n je različno od 0. Dokažemo, da je T dvostranski centralizator. Aditivna preslikava T, ki slika poljuben kolobar R vase, je (m,n)-jordanski centralizator, če je (m+n)T(x^2)=mT(x)x+nxT(x) za vsak x iz R, kjer sta m in n fiksni nenegativni celi števili in m+n je različno od 0. Ta pojem je leta 2010 vpeljal J. Vukman ter med drugim tudi dokazal, da vsak (m,n)-jordanski centralizator na poljubnem kolobarju R zadošča pogoju 2(m+n)^2T(xyx) = mnT(x)xy + m(2m + n)T(x)yx -mnT(y)x^2 + 2mnxT(y)x - mnx^2T(y) + n(m + 2n)xyT(x) + mnyxT(x) za vsak par x, y iz R. Če v tej identiteti piŠemo y = x, dobimo naslednjo funkcionalno enačbo 2(m+n)^2T(x3)=m(2m+n)T(x)x^2+2mnxT(x)x+n(m+2n)x^2T(x), ki je obravnavana v zadnjem delu doktorske disertacije na prakolobarju s primernimi omejitvami glede karakteristike, kjer sta m in n fiksni naravni števili. Dokažemo, da je T dvostranski centralizator. V zaključnem poglavju podamo odprta vprašanja o funkcionalnih enačbah, ki so v zvezi s posplošenimi odvajanji in (theta, phi)- odvajanji, kjer sta theta in phi avtomorfzma na kolobarju R.
Ključne besede: aditivna preslikava, desni (levi) centralizator, d-prosta množica, dvostranski centralizator, funkcijska identiteta, jordansko odvajanje, komutirajoča preslikava, (m, n)-jordanski centralizator, odvajanje, polprakolobar, prakolobar, standardna rešitev.
Objavljeno: 05.12.2013; Ogledov: 1148; Prenosov: 81
.pdf Celotno besedilo (427,66 KB)

3.
On certain functional equation arising from (m, n)-Jordan centralizers in prime rings
Nina Peršin, Joso Vukman, 2012, izvirni znanstveni članek

Opis: The purpose of this paper is to prove the following result. Let ▫$m ge 1$▫, ▫$n ge 1$▫ be some fixed integers and let ▫$R$▫ be a prime ring with ▫$text{char}(R)= 0$▫ or ▫$(m+n)^2 < text{char}(R)$▫. Suppose there exists an additive mapping ▫$T colon R to R$▫ satisfying the relation ▫$2(m+n)^2T(x^3) = m(2m+n)T(x)x^2 + 2mnxT(x)x + n(2n+m)x^2T(x)$▫ for all ▫$x in R$▫. In this case ▫$T$▫ is a two-sided centralizer.
Ključne besede: matematika, algebra, kolobar, prakolobar, polprakolobar, Banachov prostor, Hilbertov prostor, algebra vseh omejenih linearnih operatorjev, standardna operatorska algebra, odvajanje, jordansko odvajanje, centralizator, algebra, ring, prime ring, semiprime ring, Banach space, Hilbert space, algebra of all bounded linear operators, standard operator algebra, derivation, Jordan derivation, left (right) centralizer, two-sided centralizer, left (right) Jordan centralizer, (m, n)-Jordan centralizer
Objavljeno: 10.07.2015; Ogledov: 378; Prenosov: 38
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.08 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici