| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Triggered dynamics in a model of different fault creep regimes
Srđan Kostić, Igor Franović, Matjaž Perc, Nebojša Vasović, Kristina Todorović, 2014, izvirni znanstveni članek

Opis: The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale.
Ključne besede: geophysics, nonlinear dynamics, chaos, earthquake
Objavljeno v DKUM: 23.06.2017; Ogledov: 1413; Prenosov: 371
.pdf Celotno besedilo (669,71 KB)
Gradivo ima več datotek! Več...

2.
Predictions of experimentally observed stochastic ground vibrations induced by blasting
Srđan Kostić, Matjaž Perc, Nebojša Vasović, Slobodan Trajković, 2013, izvirni znanstveni članek

Opis: In the present paper, we investigate the blast induced ground motion recorded at the limestone quarry “Suva Vrela” near Kosjerić, which is located in the western part of Serbia. We examine the recorded signals by means of surrogate data methods and a determinism test, in order to determine whether the recorded ground velocity is stochastic or deterministic in nature. Longitudinal, transversal and the vertical ground motion component are analyzed at three monitoring points that are located at different distances from the blasting source. The analysis reveals that the recordings belong to a class of stationary linear stochastic processes with Gaussian inputs, which could be distorted by a monotonic, instantaneous, time-independent nonlinear function. Low determinism factors obtained with the determinism test further confirm the stochastic nature of the recordings. Guided by the outcome of time series analysis, we propose an improved prediction model for the peak particle velocity based on a neural network. We show that, while conventional predictors fail to provide acceptable prediction accuracy, the neural network model with four main blast parameters as input, namely total charge, maximum charge per delay, distance from the blasting source to the measuring point, and hole depth, delivers significantly more accurate predictions that may be applicable on site. We also perform a sensitivity analysis, which reveals that the distance from the blasting source has the strongest influence on the final value of the peak particle velocity. This is in full agreement with previous observations and theory, thus additionally validating our methodology and main conclusions.
Ključne besede: blasting, vibrations, surrogate data, deterministic chaos, stochasticity
Objavljeno v DKUM: 19.06.2017; Ogledov: 998; Prenosov: 338
.pdf Celotno besedilo (1,45 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.35 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici