| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
INDUKTIVNO UČENJE IZ OPAZOVANJ
Miha Pišorn, 2014, diplomsko delo

Opis: V diplomskem delu predstavimo učenje iz podatkov, kot model predvidevanja uporabimo odločitvena drevesa. Preučimo problem prekomernega prilagajanja in pogoste metode za njegovo omiljenje. Ansambelsko učenje je koncept v okviru umetne inteligence, ki združuje metode, ki sestavijo nabor klasifikatorjev in klasificirajo nove vhodne podatke na podlagi glasovanja. Te metode preučimo in pokažemo, zakaj se pogosto odrežejo bolje od posameznih klasifikatorjev. Implementiramo pogosto uporabljan algoritem Adaboost in preizkusimo njegovo obnašanje. Kot klasifikatorje uporabimo odločitvena drevesa.
Ključne besede: umetna inteligenca, strojno učenje, odločitveno drevo, ansambelsko učenje, Adaboost
Objavljeno: 06.03.2015; Ogledov: 1656; Prenosov: 101
.pdf Celotno besedilo (2,45 MB)

Iskanje izvedeno v 0.04 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici