| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 14
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
The periphery graph of a median graph
Boštjan Brešar, Manoj Changat, Ajitha R. Subhamathi, Aleksandra Tepeh, 2010, izvirni znanstveni članek

Opis: The periphery graph of a median graph is the intersection graph of its peripheral subgraphs. We show that every graph without a universal vertex can be realized as the periphery graph of a median graph. We characterize those median graphs whose periphery graph is the join of two graphs and show that they are precisely Cartesian products of median graphs. Path-like median graphs are introduced as the graphs whose periphery graph has independence number 2, and it is proved that there are path-like median graphs with arbitrarily large geodetic number. Peripheral expansion with respect to periphery graph is also considered, and connections with the concept of crossing graph are established.
Ključne besede: mathematics, graph theory, median graph, Cartesian product, geodesic, periphery, peripheral expansion
Objavljeno v DKUM: 31.03.2017; Ogledov: 1478; Prenosov: 432
.pdf Celotno besedilo (145,86 KB)
Gradivo ima več datotek! Več...

2.
n-ary transit functions in graphs
Manoj Changat, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi, 2010, izvirni znanstveni članek

Opis: ▫$n$▫-ary transit functions are introduced as a generalization of binary (2-ary) transit functions. We show that they can be associated with convexities in natural way and discuss the Steiner convexity as a natural ▫$n$▫-ary generalization of geodesicaly convexity. Furthermore, we generalize the betweenness axioms to ▫$n$▫-ary transit functions and discuss the connectivity conditions for underlying hypergraph. Also ▫$n$▫-ary all paths transit function is considered.
Ključne besede: mathematics, graph theory, n-arity, transit function, betweenness, Steiner convexity
Objavljeno v DKUM: 31.03.2017; Ogledov: 28660; Prenosov: 342
.pdf Celotno besedilo (143,68 KB)
Gradivo ima več datotek! Več...

3.
A forbidden subgraph characterization of some graph classes using betweenness axioms
Manoj Changat, Anandavally K. Lakshmikuttyamma, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi, Geetha Seethakuttyamma, Simon Špacapan, 2013, izvirni znanstveni članek

Opis: Naj bo ▫$I_G(x,y)$▫ interval najkrajših ▫$x,y$▫-poti in ▫$J_G(x,y)$▫ interval induciranih ▫$x,y$▫-poti v povezanem grafu ▫$G$▫. Obravnavani so naslednji trije aksiomi vmesnosti za množico ▫$V$▫ in ▫$R: V times V rightarrow 2^V$▫: (i) ▫$x in R(u,y), y in R(x,v), x neq y, |R(u,v)|>2 Rightarrow x in R(u,v)$▫; (ii) ▫$x in R(u,v) Rightarrow R(u,x) cap R(x,v) = {x}$▫; (iii) ▫$x in R(u,y), y in R(x,v), x neq y, Rightarrow x in R(u,v)$▫. Karakteriziramo razred grafov, za katere ▫$I_G$▫ izpolnjuje (i), razred grafov, za katere ▫$J_G$▫ izpolnjuje (ii) in razred grafov, kjer oba ▫$I_G$▫ in ▫$J_G$▫ izpolnjujeta (iii). Karakterizacije so podane z prepovedanimi induciranimi podgrafi. Izkaže se, da je razred grafov, kjer ▫$I_G$▫ izpolnjuje (i), pravi podrazred razdaljno dednih grafov in da je razred, kjer ▫$J_G$▫ izpolnjuje (ii), pravi nadrazred razdaljno dednih grafov. Podani sta tudi aksiomatični karakterizaciji tetivnih in ptolomejskih grafov.
Ključne besede: matematika, teorija grafov, prepovedani podgrafi, inducirana pot, intervalna funkcija, aksiomi vmesnosti, tetivni grafi, razdaljno dedni grafi, mathematics, graph theory, forbidden subgraphs, induced path, interval function, betweenness axioms, chordal graphs, distance hereditary graphs
Objavljeno v DKUM: 10.07.2015; Ogledov: 1309; Prenosov: 104
URL Povezava na celotno besedilo

4.
Some Steiner concepts on lexicographic products of graphs
Bijo S. Anand, Manoj Changat, Iztok Peterin, Prasanth G. Narasimha-Shenoi, 2012, izvirni znanstveni članek

Opis: The smallest tree that contains all vertices of a subset ▫$W$▫ of ▫$V(G)$▫ is called a Steiner tree. The number of edges of such a tree is the Steiner distance of ▫$W$▫ and union of all Steiner trees of ▫$W$▫ form a Steiner interval. Both of them are described for the lexicographic product in the present work. We also give a complete answer for the following invariants with respect to the Steiner convexity: the Steiner number, the rank, the hull number, and the Carathéodory number, and a partial answer for the Radon number. At the end we locate and repair a small mistake from [J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, On the geodetic and the hull numbers in strong product graphs, Comput. Math. Appl. 60 (2010) 3020--3031].
Ključne besede: teorija grafov, leksikografski produkt, Steinerjeva konveksnost, Steinerjeva množica, Steinerjeva razdalja, graph theory, lexicographic product, Steiner convexity, Steiner set, Steiner distance
Objavljeno v DKUM: 10.07.2015; Ogledov: 1219; Prenosov: 117
URL Povezava na celotno besedilo

5.
Atoms and clique separators in graph products
Bijo S. Anand, Kannan Balakrishnan, Manoj Changat, Iztok Peterin, 2012, izvirni znanstveni članek

Opis: Predstavljeni so vsi minimalni klični separatorji za vse štiri standardne produkte: kartezičnega, krepkega, leksikografskega in direktnega. Maksimalne atome natančno opišemo le za prve tri prej omenjene standardne produkte. V direktnem produktu maksimalne atome opišemo le delno. Tipična situacija za standardni grafovski produkt je, da ne vsebuje kličnih separatorjev in je posledično ves produkt maksimalni atom.
Ključne besede: matematika, teorija grafov, produkt grafov, klični separator, atom, mathematics, graph theory, clique separator, atom, graph products
Objavljeno v DKUM: 10.07.2015; Ogledov: 1063; Prenosov: 134
URL Povezava na celotno besedilo

6.
A note on Steiner intervals and betweenness
Manoj Changat, Anandavally K. Lakshmikuttyamma, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi, Aleksandra Tepeh, 2011, izvirni znanstveni članek

Opis: Geodetka in geodetski interval, ki je sestavljen iz vseh vozlišč, ki pripadajo kakšni geodetki med fiksnim parom vozlišč v povezanem grafu ▫$G$▫, sta sestavni del metrične teorije grafov. Prav tako je znano, da je Steinerjevo drevo (multi) množice s ▫$k$▫ (▫$k>2$▫) vozlišči, posplošitev geodetke. V (B. Brešar, M. Changat, J. Mathews, I. Peterin, P. G. Narasimha-Shenoi, A. Tepeh Horvat, Steiner intervals, geodesic intervals, and betweenness, Discrete Math. 309 (2009) 6114--6125) so se avtorji ukvarjali s ▫$k$▫-Steinerjevimi intervali ▫$S(u_{1},u_{2},ldots, u_{k})$▫ povezanih grafov (▫$k geq 3$▫) kot ▫$k$▫-arnimi posplošitvami geodetskih intervalov. Analogno sta bila iz binarne na ▫$k$▫-arno funkcijo posplošena tudi vmesnostni aksiom (b2) in monotoni aksiom(m) kot: za vsa vozlišča ▫$u_{1}, ldots, u_{k}, x, x_{1}, ldots, x_{k} in V(G)$▫, ki niso nujno različna ▫$$(b2)quad x in S(u_{1}, u_{2}, ldots, u_{k}) Rightarrow S(x, u_{2}, ldots, u_{k}) subseteq S(u_{1}, u_{2}, ldots, u_{k}),$$▫ ▫$$(m) quad x_{1}, ldots, x_{k} in S(u_{1}, ldots, u_{k})Rightarrow S(x_{1}, ldots,x_{k}) subseteq S(u_{1}, ldots, u_{k}).$$▫ Avtorji so v zgoraj omenjenem članku domnevali, da ▫$3$▫-Steinerjev interval povezanega grafa ▫$G$▫ zadošča vmesnostnemu aksiomu (b2) natanko tedaj, ko je vsak blok grafa ▫$G$▫ geodetski z diametrom največ 2. V tem delu dokažemo to domnevo. Pri tem dodatno dokažemo, da v vsakem geodetskem bloku z diametrom vsaj 3 obstaja izometrični cikel dolžine ▫$2k+1$▫, ▫$k>2$▫. Prav tako predstavimo dodaten aksiom (b2(2)), ki je smiseln le za 3-Steinerjeve intervale in pokažemo, da je le ta ekvivalenten monotonemu aksiomu.
Ključne besede: matematika, teorija grafov, Steinerjev interval, geodetski graf, vmesnost, mathematics, graph theory, Steiner interval, geodetic graph, betweenness
Objavljeno v DKUM: 10.07.2015; Ogledov: 1032; Prenosov: 87
URL Povezava na celotno besedilo

7.
Cover-incomparability graphs and chordal graphs
Boštjan Brešar, Manoj Changat, Tanja Dravec, Joseph Mathews, Antony Mathews, 2010, izvirni znanstveni članek

Opis: Problem prepoznavanja grafov pokritij-neprimerljivosti (to je grafov, ki jih dobimo iz delno urejenih množic kot povezavno unijo njihovega grafa pokritij in grafa neprimerljivosti) je NP-poln v splošnem, kot so dokazali v [J. Maxová, P. Pavlíkova, A. Turzík, On the complexity of cover-incomparability graphs of posets, Order 26 (2009) 229-236], medtem ko je na primer očitno polinomski v razredu dreves. V tem članku se osredotočimo na razrede tetivnih grafov in dokažemo, da je vsak graf pokritij-neprimerljivosti, ki je tetiven graf, kar graf intervalov. Okarakteriziramo tiste delno urejene množice, ki imajo za graf pokritij-neprimerljivosti bločni graf, oziroma razcepljeni graf in tudi okarakteriziramo grafe pokritij-neprimerljivosti med bločnimi, oziroma razcepljenimi grafi. Slednji karakterizaciji dasta tudi linearen algoritem za prepoznavanje bločnih, oziroma razcepljenih grafov, ki so grafi pokritij-neprimerljivosti.
Ključne besede: matematika, teorija grafov, delno urejena množica, temeljni graf, tetiven graf, razcepljen graf, bločni graf, mathematics, graph theory, poset, underlying graph, chordal graph, split graf, block graph
Objavljeno v DKUM: 10.07.2015; Ogledov: 1471; Prenosov: 94
URL Povezava na celotno besedilo

8.
Simultaneous embeddings of graphs as median and antimedian subgraphs
Kannan Balakrishnan, Boštjan Brešar, Manoj Changat, Sandi Klavžar, Matjaž Kovše, Ajitha R. Subhamathi, 2010, izvirni znanstveni članek

Opis: Razdalja ▫$D_G(v)$▫ vozlišča ▫$v$▫ v grafu ▫$G$▫ je vsota razdalj med ▫$v$▫ in vsemi drugimi vozlišči grafa ▫$G$▫. Množica vozlišč grafa ▫$G$▫ z maksimalno (minimalno) razdaljo je antimedianska (medianska) množica grafa ▫$G$▫. Dokazano je, da za poljubna grafa ▫$G$▫ in ▫$J$▫ ter za poljubno naravno število ▫$r ge 2$▫ obstaja povezani graf ▫$H$▫, tako da je ▫$G$▫ antimedianski in ▫$J$▫ medianski podgraf grafa ▫$H$▫ ter da pri tem velja ▫$d_H(G,J) = r$▫. V primeru, ko sta oba ▫$G$▫ in ▫$J$▫ povezana, lahko dodatno naredimo, da sta ▫$G$▫ in ▫$J$▫ konveksna podgrafa v ▫$H$▫.
Ključne besede: matematika, teorija grafov, problemi razmeščanja, medianske množice, antimedianske množice, konveksni podgrafi, mathematics, graph theory, facility location problems, median sets, antimedian sets, convex subgraphs
Objavljeno v DKUM: 10.07.2015; Ogledov: 1166; Prenosov: 102
URL Povezava na celotno besedilo

9.
On the remoteness function in median graphs
Kannan Balakrishnan, Boštjan Brešar, Manoj Changat, Wilfried Imrich, Sandi Klavžar, Matjaž Kovše, Ajitha R. Subhamathi, 2009, izvirni znanstveni članek

Opis: Profil grafa ▫$G$▫ je poljubna neprazna multimnožica vozlišč iz ▫$G$▫. Pripadajoča funkcija oddaljenosti priredi vsakemu vozlišču iz ▫$V(G)$▫ vsoto razdalj do vozlišč iz profila. Najprej so dobljene nekatere uporabne lastnosti funkcije oddaljenosti na hiperkockah, nato pa je funkcija oddaljenosti obravnavana na poljubnih medianskih grafih glede na njihove izometrične vložitve v hiperkocke. V posebnem je najdena povezava med vozlišči medianskega grafa ▫$G$▫, katerega funkcija oddaljenosti je največja (antimedianska množica v ▫$G$▫), z antimediansko množico pripadajoče hiperkocke. Medtem ko je za lihe profile antimedianska množica neodvisna množica, ki leži na strogem robu medianskega grafa, obstajajo medianski grafi, v katerih določeni sodi profili porajajo konstantno funkcijo oddaljenosti. Take medianske grafe karakteriziramo na dva načina: kot grafe, katerih periferna transverzala je 2, in kot grafe z geodetskim številom 2. Nazadnje predstavimo algoritem, ki za dani graf ▫$G$▫ z ▫$n$▫ vozlišči in ▫$m$▫ povezavami v času ▫$O(m log n)$▫ odloči, ali je ▫$G$▫ medianski graf z geodetskim številom 2.
Ključne besede: hiperkocka, medianski graf, medianska množica, funkcija oddaljenosti, geodetsko število, periferna transverzala, median graph, median set, remoteness function, geodetic number, periphery transverzal, hypercube
Objavljeno v DKUM: 10.07.2015; Ogledov: 1297; Prenosov: 144
URL Povezava na celotno besedilo

10.
Steiner intervals, geodesic intervals, and betweenness
Boštjan Brešar, Manoj Changat, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi, Aleksandra Tepeh, 2009, izvirni znanstveni članek

Opis: Koncept ▫$k$▫-Steinerjevih intervalov naravno posplošuje geodetske (binarne) intervale. Definiran je kot preslikava ▫$S: Vtimes cdots times V longrightarrow 2^V$▫, kjer je ▫$S(u_1, dots ,u_k)$▫ množica tistih vozlišč grafa ▫$G$▫, ki ležijo na kakem Steinerjevem drevesu glede na multimnožico ▫$W = {u_1, dots ,u_k}$▫ vozlišč iz ▫$G$▫. V tem članku za vsako naravno število ▫$k$▫ dokažemo karakterizacijo razreda tistih grafov, v katerih imajo vsi ▫$k$▫-Steinerjevi intervali t.i. lastnost unije, ki pravi, da ▫$S(u_1,ldots, u_k)$▫ sovpada z unijo geodetskih intervalov ▫$I(u_i,u_j)$▫ med vsemi pari vozlišč iz ▫$W$▫. Izkaže se, da tedaj, ko je ▫$k>3$▫, ta razred sovpada z razredom grafov, v katerih ▫$k$▫-Steinerjev interval zadošča aksiomu monotonosti(m), kot tudi z razredom grafov, v katerih ▫$k$▫-Steinerjev interval zadošča aksiomu (b2), ki sta pogoja iz teorije vmesnosti. In sicer preslikava ▫$S$▫ zadošča aksiomu (m), če iz ▫$x_1, dots ,x_k in S(u_1, dots ,u_k)$▫ sledi ▫$S(x_1, dots ,x_k) subseteq S(u_1, dots ,u_k)$▫; ter ▫$S$▫ zadošča (b2), če iz ▫$x in S(u_1,u_2, dots ,u_k)$▫ sledi ▫$S(x,u_2, dots ,u_k) subseteq S(u_1, dots ,u_k)$▫. V primeru ▫$k=3$▫ so ti trije razredi grafov različni in za razreda grafov, v katerih Steinerjev interval zadošča lastnosti unije oz. aksiomu monotonosti (m), dokažemo strukturni karakterizaciji. Prav tako predstavimo več delnih ugotovitev za razred grafov, v katerih 3-Steinerjev interval zadošča aksimu (b2), ki vodijo do domneve, da so to natanko tisti grafi, v katerih je vsak blok geodetski graf z diametrom 2.
Ključne besede: matematika, teorija grafov, Steinerjev interval, geodetski interval, razdalja, vmesnost, monotonost, bločni graf, mathematics, graph theory, Steiner interval, geodesic interval, distance, betweenness, monotonicity, block graph
Objavljeno v DKUM: 10.07.2015; Ogledov: 1165; Prenosov: 95
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.2 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici