SLO | ENG

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Razvrščanje vzorcev z uporabo inteligentnih metod
Lucijano Berus, 2017, magistrsko delo/naloga

Opis: Magistrsko delo obravnava področje umetne inteligence, strojnega učenja, razvrščanja kompleksnih vzorcev in metode določitve značilk. Predstavljeno je delovanje nekaterih najpogosteje uporabljenih razvrščevalnih algoritmov. Izdelan je bil algoritem za zaznavo Parkinsonove bolezni na podlagi zajetega zvočnega signala. Meritve zvoka so bile narejene na štiridesetih posameznikih. Od tega je bila polovica zdravih in polovica z Parkinsonovo boleznijo. Namen naloge je razviti robusten sistem za zaznavo prisotnosti Parkinsonove bolezni. Za izboljšanje natančnosti razvrščanja, so bile uporabljene različne tehnike določitve značilk (Pearsonov korelacijski koeficient, Khendallov korelacijski koeficient in Samoorganizacijske gruče) in topologije nevronskih mrež. S pomočjo usmerjene nevronske mreže, je bila dosežena 86,47 % natančnost razvrščanja. Omenjena natančnost je bila dosežena z uporabo redukcije značilk na podlagi Pearsonovega korelacijskega koeficienta.
Ključne besede: umetna inteligenca, klasifikacija, strojno učenje, Parkinsonova bolezen, umetna nevronska mreža
Objavljeno: 13.09.2017; Ogledov: 14; Prenosov: 4
.pdf Polno besedilo (1,48 MB)

Iskanje izvedeno v 0.01 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici