| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Survey of inter-prediction methods for time-varying mesh compression
Jan Dvořák, Filip Hácha, Gerasimos Arvanitis, David Podgorelec, Konstantinos Moustakas, Libor Váša, 2025, izvirni znanstveni članek

Opis: Time-varying meshes (TVMs), that is mesh sequences with varying connectivity, are a greatly versatile representation of shapesevolving in time, as they allow a surface topology to change or details to appear or disappear at any time during the sequence.This, however, comes at the cost of large storage size. Since 2003, there have been attempts to compress such data efficiently. Whilethe problem may seem trivial at first sight, considering the strong temporal coherence of shapes represented by the individualframes, it turns out that the varying connectivity and the absence of implicit correspondence information that stems from itmakes it rather difficult to exploit the redundancies present in the data. Therefore, efficient and general TVM compression is stillconsidered an open problem. We describe and categorize existing approaches while pointing out the current challenges in thefield and hint at some related techniques that might be helpful in addressing them. We also provide an overview of the reportedperformance of the discussed methods and a list of datasets that are publicly available for experiments. Finally, we also discusspotential future trends in the field.
Ključne besede: compression algorithms, data compression, modelling, polygonal mesh reduction
Objavljeno v DKUM: 07.02.2025; Ogledov: 0; Prenosov: 2
.pdf Celotno besedilo (3,11 MB)

2.
Efficient encoding and decoding of voxelized models for machine learning-based applications
Damjan Strnad, Štefan Kohek, Borut Žalik, Libor Váša, Andrej Nerat, 2025, izvirni znanstveni članek

Opis: Point clouds have become a popular training data for many practical applications of machine learning in the fields of environmental modeling and precision agriculture. In order to reduce high space requirements and the effect of noise in the data, point clouds are often transformed to a structured representation such as a voxel grid. Storing, transmitting and consuming voxelized geometry, however, remains a challenging problem for machine learning pipelines running on devices with limited amount of on-chip memory with low access latency. A viable solution is to store the data in a compact encoded format, and perform on-the-fly decoding when it is needed for processing. Such on-demand expansion must be fast in order to avoid introducing substantial additional delay to the pipeline. This can be achieved by parallel decoding, which is particularly suitable for massively parallel architecture of GPUs on which the majority of machine learning is currently executed. In this paper, we present such method for efficient and parallelizable encoding/decoding of voxelized geometry. The method employs multi-level context-aware prediction of voxel occupancy based on the extracted binary feature prediction table, and encodes the residual grid with a pointerless sparse voxel octree (PSVO). We particularly focused on encoding the datasets of voxelized trees, obtained from both synthetic tree models and LiDAR point clouds of real trees. The method achieved 15.6% and 12.8% reduction of storage size with respect to plain PSVO on synthetic and real dataset, respectively. We also tested the method on a general set of diverse voxelized objects, where an average 11% improvement of storage space was achieved.
Ključne besede: voxel grid, feature prediction, tree models, prediction-based encoding, key voxels, residuals, sparse voxel octree
Objavljeno v DKUM: 09.01.2025; Ogledov: 0; Prenosov: 5
.pdf Celotno besedilo (20,93 MB)

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici