2.
Orientable domination in product-like graphsSarah Anderson,
Boštjan Brešar,
Sandi Klavžar,
Kirsti Kuenzel,
Douglas F. Rall, 2023, izvirni znanstveni članek
Opis: The orientable domination number, ▫${\rm DOM}(G)$▫, of a graph ▫$G$▫ is the largest domination number over all orientations of ▫$G$▫. In this paper, ▫${\rm DOM}$▫ is studied on different product graphs and related graph operations. The orientable domination number of arbitrary corona products is determined, while sharp lower and upper bounds are proved for Cartesian and lexicographic products. A result of Chartrand et al. from 1996 is extended by establishing the values of ▫${\rm DOM}(K_{n_1,n_2,n_3})$▫ for arbitrary positive integers ▫$n_1,n_2$▫ and ▫$n_3$▫. While considering the orientable domination number of lexicographic product graphs, we answer in the negative a question concerning domination and packing numbers in acyclic digraphs posed in [Domination in digraphs and their direct and Cartesian products, J. Graph Theory 99 (2022) 359-377].
Ključne besede: digraph, domination, orientable domination number, packing, graph product, corona graph
Objavljeno v DKUM: 09.08.2023; Ogledov: 446; Prenosov: 39
Celotno besedilo (419,38 KB)
Gradivo ima več datotek! Več...