| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
A brief review on benchmarking for large language models evaluation in healthcare
Leona Cilar Budler, Hongyu Chen, Aokun Chen, Maxim Topaz, Wilson Tam, Jiang Bian, Gregor Štiglic, 2025, pregledni znanstveni članek

Opis: This paper reviews benchmarking methods for evaluating large language models (LLMs) in healthcare settings. It highlights the importance of rigorous benchmarking to ensure LLMs' safety, accuracy, and effectiveness in clinical applications. The review also discusses the challenges of developing standardized benchmarks and metrics tailored to healthcare-specific tasks such as medical text generation, disease diagnosis, and patient management. Ethical considerations, including privacy, data security, and bias, are also addressed, underscoring the need for multidisciplinary collaboration to establish robust benchmarking frameworks that facilitate LLMs' reliable and ethical use in healthcare. Evaluation of LLMs remains challenging due to the lack of standardized healthcare-specific benchmarks and comprehensive datasets. Key concerns include patient safety, data privacy, model bias, and better explainability, all of which impact the overall trustworthiness of LLMs in clinical settings.
Ključne besede: artificial intelligence, benchmarking, chatbots, healthcare, large language models, natural language processing
Objavljeno v DKUM: 12.05.2025; Ogledov: 0; Prenosov: 1
URL Povezava na datoteko

2.
Improving personalized meal planning with large language models: identifying and decomposing compound ingredients
Leon Kopitar, Leon Bedrač, Larissa Jane Strath, Jiang Bian, Gregor Štiglic, 2025, izvirni znanstveni članek

Opis: Background/Objectives: Identifying and decomposing compound ingredients within meal plans presents meal customization and nutritional analysis challenges. It is essential for accurately identifying and replacing problematic ingredients linked to allergies or intolerances and helping nutritional evaluation. Methods: This study explored the effectiveness of three large language models (LLMs)—GPT-4o, Llama-3 (70B), and Mixtral (8x7B), in decomposing compound ingredients into basic ingredients within meal plans. GPT-4o was used to generate 15 structured meal plans, each containing compound ingredients. Each LLM then identified and decomposed these compound items into basic ingredients. The decomposed ingredients were matched to entries in a subset of the USDA FoodData Central repository using API-based search and mapping techniques. Nutritional values were retrieved and aggregated to evaluate accuracy of decomposition. Performance was assessed through manual review by nutritionists and quantified using accuracy and F1-score. Statistical significance was tested using paired t-tests or Wilcoxon signed-rank tests based on normality. Results: Results showed that large models—both Llama-3 (70B) and GPT-4o—outperformed Mixtral (8x7B), achieving average F1-scores of 0.894 (95% CI: 0.84–0.95) and 0.842 (95% CI: 0.79–0.89), respectively, compared to an F1-score of 0.690 (95% CI: 0.62–0.76) from Mixtral (8x7B). Conclusions: The open-source Llama-3 (70B) model achieved the best performance, outperforming the commercial GPT-4o model, showing its superior ability to consistently break down compound ingredients into precise quantities within meal plans and illustrating its potential to enhance meal customization and nutritional analysis. These findings underscore the potential role of advanced LLMs in precision nutrition and their application in promoting healthier dietary practices tailored to individual preferences and needs.
Ključne besede: artificial intelligence, food analysis, LLM, Ilama, GPT, mixtral, ingredient identification, ingredient decomposition, personalized nutrition, meal customization, nutritional analysis, dietary planning
Objavljeno v DKUM: 08.05.2025; Ogledov: 0; Prenosov: 1
.pdf Celotno besedilo (684,70 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.03 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici