1. Microstructure, mechanical properties and fatigue behaviour of a new high-strength aluminium alloy AA 6086Franc Zupanič, Jernej Klemenc, Matej Steinacher, Srečko Glodež, 2023, izvirni znanstveni članek Opis: This study presents the comprehensive experimental investigation of the microstructure, mechanical and fatigue properties of a new high-strength aluminium alloy AA 6086, which was developed from a commercial aluminium alloy AA 6082. The new alloy possesses a higher content of Si, and, it also contains Cu and Zr. The alloy was characterised in the as-cast condition after homogenisation, extrusion, and T6 heat treatment. Light microscopy, scanning and transmission electron microscopy with energy dispersive spectrometry were used to analyse the microstructure and the fractography of broken specimens. The quasi-static and fatigue tests were performed on the MTS Landmark 100 kN servo-hydraulic test machine, controlled with a mechanical extensometer with a 25 mm gauge length. The quasi-static strength of the analysed aluminium alloy AA 6086 was found to be significantly higher if compared to some other AA 6xxx alloys, while the ductility was kept almost the same. The experimental results of the comprehensive fatigue tests in a Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) regime showed a good fatigue resistance, and represent a good basis for engineering design applications of the newly developed aluminium alloy AA 6086. Ključne besede: aluminijeve zlitine, karakterizacija materiala, utrujanje, eksperimentalno testiranje, statistično ovrednotenje, Aluminium Alloy AA 6086, material characterisation, fatigue behaviour, experimental testing, statistical evaluation Objavljeno v DKUM: 02.04.2024; Ogledov: 281; Prenosov: 29
Povezava na celotno besedilo Gradivo ima več datotek! Več... |
2. LCF behaviour of high strength aluminium alloys AA 6110A and AA 6086Jernej Klemenc, Srečko Glodež, Matej Steinacher, Franc Zupanič, 2023, izvirni znanstveni članek Opis: The proposed research presents the comprehensive investigation of the Low Cycle Fatigue (LCF) behaviour of two high-strength aluminium alloys of series AA 6xxx: the conventional alloy AA 6110A and the newly developed alloy AA 6086. Both alloys were characterised in the as-cast condition after homogenisation, extrusion, and T6 heat treatment.
The quasi-static strength and hardness of the aluminium alloy AA 6086 were found to be significantly higher if compared to the AA 6110A alloys, while the ductility was a little bit smaller. The LCF tests showed that the AA 6086 alloy is more suitable for the high-cycle fatigue regime. On the other hand, the engineering advantage of the AA 6110A alloy is only for low-cycle fatigue applications if less than 100 loading cycles are expected in the service life of the analysed structure. The fatigue cracks formed predominantly on the α-AlMnSi intermetallic particles in both alloys, and, during LCF tests, exhibited small crack propagation. The area of the fatigue crack growth was much smaller than the area of the forced fracture. At smaller amplitude strains the fatigue striations were present at the fracture surface, while, at higher amplitude strains, they were not present. The obtained experimental results represent a good basis for engineering design applications of the analysed alloys AA 6086 and AA 6110A. Ključne besede: aluminijeve zlitine, malociklično utrujanje, eksperimentalno testiranje, fraktografija, aluminium alloys, low cycle fatigue, experimental testing, fractography Objavljeno v DKUM: 29.03.2024; Ogledov: 197; Prenosov: 15
Povezava na celotno besedilo Gradivo ima več datotek! Več... |
3. Razvoj večnamenskih avksetičnih celičnih struktur : zaključno poročilo temeljnega raziskovalnega projektaMatej Vesenjak, Srečko Glodež, Zoran Ren, Miran Ulbin, Matej Borovinšek, Nejc Novak, Marko Šori, Jernej Klemenc, Marko Nagode, Aleš Gosar, Andrej Škrlec, Mitja Franko, Tadej Kocjan, Dejan Tomažinčič, 2021, končno poročilo o rezultatih raziskav Ključne besede: materiali, avksetične celične strukture, mehanske lastnosti, deformacije, konstruiranje Objavljeno v DKUM: 25.04.2022; Ogledov: 1078; Prenosov: 62
Celotno besedilo (996,76 KB) |