| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Napovedovanje GPS sledi z globokimi nevronskimi mrežami
Jernej Borlinić, 2018, magistrsko delo

Opis: Metode strojnega učenja vse bolj prodirajo v vsa področja modernega gospodarskega in raziskovalnega okolja. Obstoječi algoritmi dosegajo vrhunske rezultate pri nalogah kot so prepoznavanje slik, razumevanje besedil in govora ipd. Avtomatizirane rešitve takšnih nalog so še nedavno veljale za nedosegljive. V tej magistrski nalogi pregledamo najpopularnejše globoke nevronske mreže, iz njih sestavljene modele in njihove načine učenja. S pridobljenim znanjem in večkratnim testiranjem v drugem delu, razvijemo model globoke nevronske mreže za napovedovanje GPS sledi. Osnovno testiranje modela poteka na lastnem naboru sintetično ustvarjenih podatkov. Dva najuspešnejša modela v nadaljevanju učimo s pomočjo izbranih realnih podatkov pridobljenih od podjetja GoOpti d. o. o. Končni izpopolnjen model pa učimo z razširjenim naborom realnih podatkov. V magistrski nalogi so opisani izbira in implementacija modela, način učenja, ustvarjanje in pridobivanje naborov podatkov in pridobljeni rezultati.
Ključne besede: Strojno učenje, globoko učenje, globoke nevronske mreže, povratne nevronske mreže.
Objavljeno v DKUM: 13.12.2018; Ogledov: 2677; Prenosov: 162
.pdf Celotno besedilo (9,58 MB)

Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici