| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
On the vertex k-path cover
Boštjan Brešar, Marko Jakovac, Ján Katrenič, Gabriel Semanišin, Andrej Taranenko, 2013, izvirni znanstveni članek

Opis: A subset ▫$S$▫ of vertices of a graph ▫$G$▫ is called a vertex ▫$k$▫-path cover if every path of order ▫$k$▫ in ▫$G$▫ contains at least one vertex from ▫$S$▫. Denote by ▫$psi_k(G)$▫ the minimum cardinality of a vertex ▫$k$▫-path cover in ▫$G$▫. In this paper, an upper bound for ▫$psi_3$▫ in graphs with a given average degree is presented. A lower bound for ▫$psi_k$▫ of regular graphs is also proven. For grids, i.e. the Cartesian products of two paths, we give an asymptotically tight bound for ▫$psi_k$▫ and the exact value for ▫$psi_3$▫.
Ključne besede: matematika, teorija grafov, vozliščno pokritje, regularni grafi, mreže, mathematics, graph theory, vertex cover, grids
Objavljeno: 10.07.2015; Ogledov: 411; Prenosov: 8
URL Povezava na celotno besedilo

2.
Minimum k-path vertex cover
Boštjan Brešar, František Kardoš, Ján Katrenič, Gabriel Semanišin, 2011, izvirni znanstveni članek

Opis: Podmnožica ▫$S$▫ množice vozlišč grafa ▫$G$▫ se imenuje po poteh ▫$k$▫-vozliščno pokritje, če vsaka pot reda ▫$k$▫ v grafu ▫$G$▫ vsebuje vsaj eno vozlišče iz ▫$S$▫. Označimo s ▫$psi_k(G)$▫ najmanjšo kardinalnost po poteh ▫$k$▫-vozliščnega pokritja v grafu ▫$G$▫. V članku dokažemo, da je problem določitve ▫$psi_k(G)$▫ NP-poln problem za vsak ▫$k geq 2$▫, medtem ko lahko za drevesa ta problem rešimo v linearnem času. Raziskujemo zgornje meje za vrednost ▫$psi_k(G)$▫ in dokažemo več ocen ter točnih vrednosti za to število. Prav tako dokažemo, da je ▫$psi_3(G) leq (2n + m)/6$▫, za vsak graf ▫$G$▫ z ▫$n$▫ vozlišči in ▫$m$▫ povezavami.
Ključne besede: matematika, teorija grafov, algoritem, vozliščno pokritje, pot, NP-polnost, disociacijsko število, po poteh vozliščno pokritje, mathematics, graph theory, algorithm, path, vertex cover, dissociation number, path vertex cover, NP-complete
Objavljeno: 10.07.2015; Ogledov: 371; Prenosov: 4
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.03 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici