| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Iskanje ranljivosti XSS v spletnih aplikacijah z uporabo metod strojnega učenja
Ivan Kozulić, 2020, magistrsko delo

Opis: Cross-site scripting (XSS) napadi še vedno predstavljajo veliko varnostno tveganje pri spletnih aplikacijah. V magistrskem delu predstavljamo metodo za iskanje ranljivosti v JavaScript programski kodi, pri čemer smo uporabili algoritme strojnega učenja. V teoretičnem delu najprej opišemo osnovne koncepte napadov XSS in z njimi povezane ranljivosti. Predstavimo tudi sorodne pristope za iskanje ranljivosti XSS. V praktičnem delu magistrskega dela pa se posvetimo načinu izračuna značilnic iz JavaScript kode ter pripravi učne in testne množice. Na podlagi značilnic smo usposobili model strojnega učenja za ločevanje ranljivih od neranljivih aplikacij. Iz rezultatov sklepamo, da je metoda učinkovita in nudi dodatno podporo pri odkrivanju ranljivosti XSS.
Ključne besede: varnost spletnih aplikacij, XSS, JavaScript, strojno učenje
Objavljeno: 04.11.2020; Ogledov: 109; Prenosov: 33
.pdf Celotno besedilo (1,24 MB)

Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici