| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Multi-objective optimization algorithms with the island metaheuristic for effective project management problem solving
Christina Brester, Ivan Ryzhikov, Eugene Semenkin, 2017, izvirni znanstveni članek

Opis: Background and Purpose: In every organization, project management raises many different decision-making problems, a large proportion of which can be efficiently solved using specific decision-making support systems. Yet such kinds of problems are always a challenge since there is no time-efficient or computationally efficient algorithm to solve them as a result of their complexity. In this study, we consider the problem of optimal financial investment. In our solution, we take into account the following organizational resource and project characteristics: profits, costs and risks. Design/Methodology/Approach: The decision-making problem is reduced to a multi-criteria 0-1 knapsack problem. This implies that we need to find a non-dominated set of alternative solutions, which are a trade-off between maximizing incomes and minimizing risks. At the same time, alternatives must satisfy constraints. This leads to a constrained two-criterion optimization problem in the Boolean space. To cope with the peculiarities and high complexity of the problem, evolution-based algorithms with an island meta-heuristic are applied as an alternative to conventional techniques. Results: The problem in hand was reduced to a two-criterion unconstrained extreme problem and solved with different evolution-based multi-objective optimization heuristics. Next, we applied a proposed meta-heuristic combining the particular algorithms and causing their interaction in a cooperative and collaborative way. The obtained results showed that the island heuristic outperformed the original ones based on the values of a specific metric, thus showing the representativeness of Pareto front approximations. Having more representative approximations, decision-makers have more alternative project portfolios corresponding to different risk and profit estimations. Since these criteria are conflicting, when choosing an alternative with an estimated high profit, decision-makers follow a strategy with an estimated high risk and vice versa. Conclusion: In the present paper, the project portfolio decision-making problem was reduced to a 0-1 knapsack constrained multi-objective optimization problem. The algorithm investigation confirms that the use of the island meta-heuristic significantly improves the performance of genetic algorithms, thereby providing an efficient tool for Financial Responsibility Centres Management.
Ključne besede: 0-1 multi-objective constrained knapsack problem, project management portfolio problem, multi-objective evolution-based optimization algorithms, collaborative and cooperative meta-heuristics
Objavljeno: 04.05.2018; Ogledov: 701; Prenosov: 204
.pdf Celotno besedilo (993,98 KB)
Gradivo ima več datotek! Več...

Hybridization of stochastic local search and genetic algorithm for human resource planning management
Andrej Škraba, Vladimir Stanovov, Eugene Semenkin, Davorin Kofjač, 2016, izvirni znanstveni članek

Opis: Background and Purpose: The restructuring of human resources in an organization is addressed in this paper, because human resource planning is a crucial process in every organization. Here, a strict hierarchical structure of the organization is of concern here, for which a change in a particular class of the structure influences classes that follow it. Furthermore, a quick adaptation of the structure to the desired state is required, where oscillations in transitions between classes are not desired, because they slow down the process of adaptation. Therefore, optimization of such a structure is highly complex, and heuristic methods are needed to approach such problems to address them properly. Design/Methodology/Approach: The hierarchical human resources structure is modeled according to the principles of System Dynamics. Optimization of the structure is performed with an algorithm that combines stochastic local search and genetic algorithms. Results: The developed algorithm was tested on three scenarios; each scenario exhibits a different dynamic in achieving the desired state of the human resource structure. The results show that the developed algorithm has successfully optimized the model parameters to achieve the desired structure of human resources quickly. Conclusion: We have presented the mathematical model and optimization algorithm to tackle the restructuring of human resources for strict hierarchical organizations. With the developed algorithm, we have successfully achieved the desired organizational structure in all three cases, without the undesired oscillations in the transitions between classes and in the shortest possible time.
Ključne besede: stochastic local search, system dynamics, human resources, simulation
Objavljeno: 04.04.2017; Ogledov: 541; Prenosov: 265
.pdf Celotno besedilo (474,90 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.1 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici