| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 18
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
A survey on packing colorings
Boštjan Brešar, Jasmina Ferme, Sandi Klavžar, Douglas F. Rall, 2020, pregledni znanstveni članek

Opis: If S=(a1,a2,...) is a non-decreasing sequence of positive integers, then an S-packing coloring of a graph G is a partition of V (G) into sets X1,X2,... such that for each pair of distinct vertices in the set Xi, the distance between them is larger than ai. If there exists an integer k such that V(G)=X1 U ... U Xk, then the partition is called an S-packing k-coloring. The S-packing chromatic number of G is the smallest k such that G admits an S-packing k-coloring. If ai=i for every i, then the terminology reduces to packing colorings and packing chromatic number. Since the introduction of these generalizations of the chromatic number in 2008 more than fifty papers followed. Here we survey the state of the art on the packing coloring, and ts generalization, the S-packing coloring. We also list several conjecres and open problems.
Ključne besede: packing coloring, packing chromatic number, subcubic graph, S-packing chromatic number, computational complexity
Objavljeno v DKUM: 11.03.2025; Ogledov: 0; Prenosov: 5
.pdf Celotno besedilo (98,49 KB)
Gradivo ima več datotek! Več...

2.
A new framework to approach Vizing's conjecture
Boštjan Brešar, Bert L. Hartnell, Michael A. Henning, Kirsti Kuenzel, Douglas F. Rall, 2021, izvirni znanstveni članek

Opis: We introduce a new setting for dealing with the problem of the domination number of the Cartesian product of graphs related to Vizing's conjecture. The new framework unifies two different approaches to the conjecture. The most common approach restricts one of the factors of the product to some class of graphs and proves the inequality of the conjecture then holds when the other factor is any graph. The other approach utilizes the so-called Clark-Suen partition for proving a weaker inequality that holds for all pairs of graphs. We demonstrate the strength of our framework by improving the bound of Clark and Suen as follows: ɣ(X◻Y) ≥ max{1/2ɣ(X) ɣt(Y), 1/2ɣt(X) ɣ(Y)}, where ɣ stands for the domination number, ɣt is the total domination number, and X◻Y is the Cartesian product of graphs X and Y.
Ključne besede: Cartesian product, total domination, Vizing's conjecture, Clark and Suen bound
Objavljeno v DKUM: 09.08.2024; Ogledov: 86; Prenosov: 11
.pdf Celotno besedilo (179,75 KB)
Gradivo ima več datotek! Več...

3.
Packings in bipartite prisms and hypercubes
Boštjan Brešar, Sandi Klavžar, Douglas F. Rall, 2024, izvirni znanstveni članek

Opis: ▫$2$▫-pakirno število ▫$\rho_2(G)$▫ grafa ▫$G$▫ je kardinalnost največjega ▫$2$▫-pakiranja grafa ▫$G$▫, odprto pakirno število ▫$\rho^{\rm o}(G)$▫ pa kardinalnost največjega odprtega pakiranja grafa ▫$G$▫, kjer je odprto pakiranje (oz. ▫$2$▫ pakiranje) množica vozlišč grafa ▫$G$▫, katerih dve (zaprti) soseščini se ne sekata. Dokazano je, da če je ▫$G$▫ dvodelen, potem je ▫$\rho^{\rm o}(G\Box K_2) = 2\rho_2(G)$▫. Za hiperkocke sta določeni spodnji meji ▫$\rho_2(Q_n) \ge 2^{n - \lfloor \log n\rfloor -1}$▫ in ▫$\rho^{\rm o}(Q_n) \ge 2^{n - \lfloor \log (n-1)\rfloor -1}$▫. Te ugotovitve so uporabljene za injektivna barvanja hiperkock. Dokazano je, da je ▫$Q_9$▫ najmanjša hiperkocka, ki ni popolno injektivno obarvljiva. Dokazano je tudi, da je ▫$\gamma_t(Q_{2^k}\times H) = 2^{2^k-k}\gamma_t(H)$▫, kjer je ▫$H$▫ poljuben graf brez izoliranih vozlišč.
Ključne besede: 2-pakirno število, odprto pakirno število, dvodelna prizma, hiperkocke, injektivno barvanje, celotno dominacijsko število, 2-packing number, open packing number, bipartite prism, hypercube, injective coloring, total domination number
Objavljeno v DKUM: 28.02.2024; Ogledov: 260; Prenosov: 9
URL Povezava na celotno besedilo

4.
Orientable domination in product-like graphs
Sarah Anderson, Boštjan Brešar, Sandi Klavžar, Kirsti Kuenzel, Douglas F. Rall, 2023, izvirni znanstveni članek

Opis: The orientable domination number, ▫${\rm DOM}(G)$▫, of a graph ▫$G$▫ is the largest domination number over all orientations of ▫$G$▫. In this paper, ▫${\rm DOM}$▫ is studied on different product graphs and related graph operations. The orientable domination number of arbitrary corona products is determined, while sharp lower and upper bounds are proved for Cartesian and lexicographic products. A result of Chartrand et al. from 1996 is extended by establishing the values of ▫${\rm DOM}(K_{n_1,n_2,n_3})$▫ for arbitrary positive integers ▫$n_1,n_2$▫ and ▫$n_3$▫. While considering the orientable domination number of lexicographic product graphs, we answer in the negative a question concerning domination and packing numbers in acyclic digraphs posed in [Domination in digraphs and their direct and Cartesian products, J. Graph Theory 99 (2022) 359-377].
Ključne besede: digraph, domination, orientable domination number, packing, graph product, corona graph
Objavljeno v DKUM: 09.08.2023; Ogledov: 446; Prenosov: 54
.pdf Celotno besedilo (419,38 KB)
Gradivo ima več datotek! Več...

5.
Partitioning the vertex set of ▫$G$▫ to make ▫$G \Box H$▫ an efficient open domination graph
Tadeja Kraner Šumenjak, Iztok Peterin, Douglas F. Rall, Aleksandra Tepeh, 2016, izvirni znanstveni članek

Opis: A graph is an efficient open domination graph if there exists a subset of vertices whose open neighborhoods partition its vertex set. We characterize those graphs ▫$G$▫ for which the Cartesian product ▫$G \Box H$▫ is an efficient open domination graph when ▫$H$▫ is a complete graph of order at least 3 or a complete bipartite graph. The characterization is based on the existence of a certain type of weak partition of ▫$V(G)$▫. For the class of trees when ▫$H$▫ is complete of order at least 3, the characterization is constructive. In addition, a special type of efficient open domination graph is characterized among Cartesian products ▫$G \Box H$▫ when ▫$H$▫ is a 5-cycle or a 4-cycle.
Ključne besede: efficient open domination, Cartesian product, vertex labeling, total domination
Objavljeno v DKUM: 10.07.2017; Ogledov: 1085; Prenosov: 170
.pdf Celotno besedilo (166,60 KB)
Gradivo ima več datotek! Več...

6.
Guarded subgraphs and the domination game
Boštjan Brešar, Sandi Klavžar, Gašper Košmrlj, Douglas F. Rall, 2015, izvirni znanstveni članek

Opis: V članku vpeljemo koncept zaščitenega podgrafa. Množica le-teh po definicji leži med množico konveksnih in 2-izometričnih podgrafov, hkrati pa ni primerljiva z množico izometričnimih podgrafov. Dokažemo nekatere metrične lastnosti zaščitenih podgrafov ter koncept uporabimo v dominacijski igri, v kateri dva igralca, Dominator in Zavlačevalka, izmenično izbirata vozlišča grafa, tako da vsako izbrano vozlišče poveča množico dominiranih vozlišč. Dominatorjev cilj je končati igro, tj. dominirati celoten graf, čim hitreje, medtem ko je Zavlačevalkin cilj odigrati čim več potez. Igralno dominacijsko število je število potez v igri, ko Dominator začne in oba igralca igrata optimalno. Kot glavni rezultat članka dokažemo, da igralno dominacijsko število grafa ni nikoli manjše, kot igralno dominacijsko število njegovega zaščitenega podgrafa. Predstavljenih je tudi več aplikacij tega rezultata.
Ključne besede: dominacijska igra, igralno dominacijsko številko, konveksni podgraf, (2-)izometrični podgraf
Objavljeno v DKUM: 10.07.2017; Ogledov: 1467; Prenosov: 206
.pdf Celotno besedilo (690,85 KB)
Gradivo ima več datotek! Več...

7.
Domination game: extremal families of graphs for 3/5-conjectures
Boštjan Brešar, Sandi Klavžar, Gašper Košmrlj, Douglas F. Rall, 2013, izvirni znanstveni članek

Opis: Igralca, Dominator in Zavlačevalka, izmenoma izbirata vozlišča grafa ▫$G$▫, takoda vsako izbrano vozlišče poveča množico do sedaj dominiranih vozlišč. Cilj Dominatorja je končati igro čim hitreje, medtem ko je Zavlačevalkin cilj ravno nasprotno. Igralno dominacijsko število ▫$gamma_g(G)$▫ je skupno število izbranih vozlišč v igri, ko Dominator naredi prvo potezo in oba igralca igrata optimalno. Postavljena je bila domneva [W.B. Kinnersley, D.B. West, R. Zemani, Extremal problems for game domination number, Manuscript, 2012], da velja ▫$gamma_g(G) leq frac{3|V(G)|}{5}$▫ za poljuben graf ▫$G$▫ brez izoliranih vozlišč. V posebnem je domneva odprta tudi, ko je ▫$G$▫ gozd. V tem članku predstavimo konstrukcije, ki nam dajo velike družine dreves, ki dosežejo domnevno mejo ▫$3/5$▫. Leplenje dreves iz nekaterih izmed teh družin napoljuben graf nam da konstrukcijo grafov ▫$G$▫, ki imajo igralno dominacijsko število enako ▫$3|V(G)|/5$▫. Z računalnikom smo poiskali vsa ekstremna drevesa znajveč 20 vozlišči. V posebnem, na 20 vozliščih obstaja natanko deset dreves ▫$T$▫, za katere velja ▫$gamma_g(T) = 12$▫, in vsa pripadajo skonstruiranim družinam.
Ključne besede: matematika, teorija grafov, dominacijska igra, igralno dominacijsko številko, 3/5-domneva, računalniško iskanje, mathematics, graph theory, domination game, game domination number, 3/5-conjecture, computer search
Objavljeno v DKUM: 10.07.2015; Ogledov: 1488; Prenosov: 96
URL Povezava na celotno besedilo

8.
Domination game played on trees and spanning subgraphs
Boštjan Brešar, Sandi Klavžar, Douglas F. Rall, 2013, izvirni znanstveni članek

Opis: Igra dominacije na grafu ▫$G$▫ je bila vpeljana v [B. Brešar, S. Klavžar, D. F. Rall, Domination game and an imagination strategy, SIAM J. Discrete Math. 24 (2010) 979-991]. Dva igralca, Dominator in Zavlačevalec, drug za drugim izbirata po eno vozlišče grafa. Vsako izbrano vozlišče mora povečati množico vozlišč, ki so bila dominirana do tega trenutka igre. Oba igralca izbirata optimalno strategijo, pri čemer Dominator želi igro končati v najmanjšem možnem številu korakov, Zavlačevalec pa v največjem možnem številu korakov. Igralno dominacijsko število ▫$gamma_g(G)$▫ je število izbranih vozlišč v igri, kjer je Dominator prvi izbral vozlišče. Ustrezno invarianto, ko igro začne Zavlačevalec, označimo z ▫$gamma_g'(G)$▫. V članku sta obe igri proučevani na drevesih in vpetih podgrafih. Dokazana je spodnja meja za igralno dominacijsko število drevesa, ki je funkcija njegovega reda in maksimalne stopnje. Pokazano je, da je meja asimptotično optimalna. Dokazano je, da za vsak ▫$k$▫ obstaja drevo ▫$T$▫ z ▫$(gamma_g(T),gamma_g'(T)) = (k,k+1)$▫ in postavljena je domneva, da ne obstaja drevo z ▫$(gamma_g(T),gamma_g'(T)) = (k,k-1)$▫. Obravnavana je povezava med igralnim dominacijskim številom grafa in njegovimi vpetimi podgrafi. Dokazano je, da obstajajo 3-povezani grafi ▫$G$▫, ki vsebujejo 2-povezani vpeti podgraf ▫$H$▫, tako da je igralno dominacijsko število grafa ▫$H$▫ poljubno manjše od igralnega dominacijskega števila grafa ▫$G$▫. Podobno je dokazano, da za vsako celo število ▫$ell ge 1$▫ obstajata graf ▫$G$▫ in njegov vpeti podgraf $T$, tako da velja ▫$gamma_g(G)-gamma_g(T) ge ell$▫. Po drugi strani obstajajo grafi ▫$G$▫, za katere je igralno dominacijsko število vsakega vpetega drevesa v ▫$G$▫ poljubno večje od igralnega dominacijskega števila od ▫$G$▫.
Ključne besede: igra dominacije, igralno dominacijsko število, drevo, vpeti podgraf, graph theory, domination game, game domination number, tree, spanning subgraph
Objavljeno v DKUM: 10.07.2015; Ogledov: 1349; Prenosov: 95
URL Povezava na celotno besedilo

9.
Vizing's conjecture: a survey and recent results
Boštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2012, pregledni znanstveni članek

Opis: Vizingova domneva iz leta 1968 trdi, da je dominacijsko število kartezičnega produkta dveh grafov vsaj tako veliko, kot je produkt dominacijskih števil faktorjev. V članku naredimo pregled različnih pristopov k tej osrednji domnevi iz teorije grafovske dominacije. Ob tem dokažemo tudi nekaj novih rezultatov. Tako so na primer pokazane nove lastnosti minimalnega protiprimera, dokazana je tudi nova spodnja meja za produkte grafov brez induciranega ▫$K_{1,3}$▫ s poljubnimi grafi. Skozi celoten članek so obravnavani pripadajoči odprti problemi, vprašanja in sorodne domneve.
Ključne besede: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture
Objavljeno v DKUM: 10.07.2015; Ogledov: 1362; Prenosov: 91
URL Povezava na celotno besedilo

10.
Vizing's conjecture: a survey and recent results
Boštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2009

Opis: Vizing's conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained and a lower bound for the domination number is proved for products of claw-free graphs with arbitrary graphs. Open problems, questions and related conjectures are discussed throughout the paper.
Ključne besede: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture
Objavljeno v DKUM: 10.07.2015; Ogledov: 1365; Prenosov: 100
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.18 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici