1. Optimization-based downscaling of satellite-derived isotropic broadband albedo to high resolutionNiko Lukač, Domen Mongus, Marko Bizjak, 2025, izvirni znanstveni članek Opis: In this paper, a novel method for estimating high-resolution isotropic broadband albedo is proposed, by downscaling satellite-derived albedo using an optimization approach. At first, broadband albedo is calculated from the lower-resolution multispectral satellite image using standard narrow-to-broadband (NTB) conversion, where the surfaces are considered Lambertian with isotropic reflectance. The high-resolution true orthophoto for the same location is segmented with the deep learning-based Segment Anything Model (SAM), and the resulting segments are refined with a classified digital surface model (cDSM) to exclude small transient objects. Afterwards, the remaining segments are grouped using K-means clustering, by considering orthophoto-visible (VIS) and near-infrared (NIR) bands. These segments present surfaces with similar materials and underlying reflectance properties. Next, the Differential Evolution (DE) optimization algorithm is applied to approximate albedo values to these segments so that their spatial aggregate matches the coarse-resolution satellite albedo, by proposing two novel objective functions. Extensive experiments considering different DE parameters over an 0.75 km2 large urban area in Maribor, Slovenia, have been carried out, where Sentinel-2 Level-2A NTB-derived albedo was downscaled to 1 m spatial resolution. Looking at the performed spatiospectral analysis, the proposed method achieved absolute differences of 0.09 per VIS band and below 0.18 per NIR band, in comparison to lower-resolution NTB-derived albedo. Moreover, the proposed method achieved a root mean square error (RMSE) of 0.0179 and a mean absolute percentage error (MAPE) of 4.0299% against ground truth broadband albedo annotations of characteristic materials in the given urban area. The proposed method outperformed the Enhanced Super-Resolution Generative Adversarial Networks (ESRGANs), which achieved an RMSE of 0.0285 and an MAPE of 9.2778%, and the Blind Super-Resolution Generative Adversarial Network (BSRGAN), which achieved an RMSE of 0.0341 and an MAPE of 12.3104%. Ključne besede: isotropic broadband albedo, high-resolution albedo, Sentinel-2 albedo, true orthophoto, anything model, differential evolution Objavljeno v DKUM: 23.04.2025; Ogledov: 0; Prenosov: 0
Celotno besedilo (20,47 MB) |
2. Energy flexibility in aluminium smelting : a long-term feasibility study based on the prospects of electricity load and photovoltaic productionMarko Bizjak, Niko Uremović, Domen Mongus, Primož Sukič, Gorazd Štumberger, Haris Salihagić Hrenko, Dragan Mikša, Stanislav Kores, Niko Lukač, 2024, izvirni znanstveni članek Ključne besede: energy flexibility, aluminium smelting, renewable energy, virtual battery, solar production Objavljeno v DKUM: 17.12.2024; Ogledov: 0; Prenosov: 16
Celotno besedilo (1,91 MB) |
3. Novel GPU-accelerated high-resolution solar potential estimation in urban areas by using a modified diffuse irradiance modelNiko Lukač, Domen Mongus, Borut Žalik, Gorazd Štumberger, Marko Bizjak, 2024, izvirni znanstveni članek Opis: In the past years various methods have been developed to estimate high-resolution solar potential in urban areas, by simulating solar irradiance over surface models that originate from remote sensing data. In general, this requires discretisation of solar irradiance models that estimate direct, reflective, and diffuse irradiances. The latter is most accurately estimated by an anisotropic model, where the hemispherical sky dome from arbitrary surface’s viewpoint consists of the horizon, the circumsolar and sky regions. Such model can be modified to incorporate the effects of shadowing from obstruction with a view factor for each sky region. However, state-of-the-art using such models for estimating solar potential in urban areas, only considers the sky view factor, and not circumsolar view factor, due to high computational load. In this paper, a novel parallelisation of solar potential estimation is proposed by using General Purpose computing on Graphics Processing Units (GPGPU). Modified anisotropic Perez model is used by considering diffuse shadowing with all three sky view factors. Moreover, we provide validation based on sensitivity analysis of the method’s accuracy with independent meteorological measurements, by changing circumsolar sky region’s half-angle and resolution of the hemispherical sky dome. Finally, the presented method using GPPGU was compared to multithreaded Central Processing Unit (CPU) approach, where on average a 70x computational speedup was achieved. Finally, the proposed method was applied over a urban area, obtained from Light Detection And Ranging (LiDAR) data, where the computation of solar potential was performed in a reasonable time. Ključne besede: solar energy, solar potential, anisotropic diffuse irradiance, LiDAR, GPGPU Objavljeno v DKUM: 17.12.2024; Ogledov: 0; Prenosov: 4
Celotno besedilo (8,06 MB) |
4. |
5. |
6. |
7. Graph Neural Network-Based Method of Spatiotemporal Land Cover Mapping Using Satellite ImageryDomen Kavran, Domen Mongus, Borut Žalik, Niko Lukač, 2023, izvirni znanstveni članek Ključne besede: multispectral, Sentinel-2, superpixel, node, EfficientNetV2, GraphSAGE Objavljeno v DKUM: 23.05.2024; Ogledov: 158; Prenosov: 22
Celotno besedilo (34,47 MB) Gradivo ima več datotek! Več... |
8. Detection and Monitoring of Woody Vegetation Landscape Features Using Periodic Aerial PhotographyDamjan Strnad, Štefan Horvat, Domen Mongus, Danijel Ivajnšič, Štefan Kohek, 2023, izvirni znanstveni članek Ključne besede: woody vegetation landscape features, change detection, segmentation neural network, cyclic aerial photography, digital orthophoto Objavljeno v DKUM: 23.05.2024; Ogledov: 196; Prenosov: 24
Celotno besedilo (6,12 MB) Gradivo ima več datotek! Več... |
9. Učinkovit iterativni algoritem učenja razložljivih značilnic za izboljšano klasifikacijo : doktorska disertacijaDino Vlahek, 2024, doktorska disertacija Opis: V doktorski disertaciji opišemo nov postopek učenja razložljivih značilnic za klasifikacijske namene. Značilnice med vsako iteracijo rekombiniramo na osnovi vnaprej podanih aritmetičnih operacij, ocenimo pa jih glede na njihovo primernosti za klasifikacijo. Slednja temelji na prekrivanju porazdelitve verjetnosti med vrednostmi vzorcev, ki pripadajo različnim razredom. Za nadaljnji razvoj v naslednjo iteracijo izberemo podmnožico najbolj kakovostnih nekoreliranih značilnic z uporabo nove metode, ki temelji na rezu grafa. Pri tem se postopek opira na dva vhoda parametra, ki omogočata nadzor nad številom členov izhodnih značilnic. Prvi opisuje minimalno sprejemljivo kakovost značilnic, ki jih je treba vključiti v izhodni prostor značilnic, medtem ko drugi določa najvišjo dovoljeno stopnjo podobnosti med značilnicama. Rezultati pokažejo, da je metoda nizko občutljiva na
oba vhodna parametra. Naučene značilnice pa statistično značilno izboljšajo klasifikacijsko točnost vseh testiranih klasifikatorjev, medtem ko najboljše točnosti dosežemo z uporabo klasifikatorja naključnih gozdov. Z rezultati primerjave pokažemo, da je predlagani postopek v vseh testnih primerih dosegal ali presegal klasifikacijske točnosti trenutnega stanje tehnike. Prav tako pokažemo tudi pravilnost razlage naučenih značilnic dobro preučene množice testnih podatkov. Ključne besede: klasifikacija podatkov, razložljiva umetna inteligenca, učenje značilnic, odkrivanje znanja Objavljeno v DKUM: 07.05.2024; Ogledov: 266; Prenosov: 96
Celotno besedilo (1,22 MB) |
10. Postopek zaznave sprememb rabe zemljišč s časovno analizo podatkov daljinskega zaznavanja : magistrsko deloSašo Ivič, 2024, magistrsko delo Opis: Daljinsko zaznavanje je pridobivanje informacij brez fizičnega stika. S pomočjo satelita Sentinel-2, lahko z odbojem elektromagnetnega valovanja pridobimo informacije o površju Zemlje. Preko platforme Copernicus Open Access Hub, ki jo upravlja Evropska vesoljska agencija, lahko brezplačno dostopamo do podatkov satelitov Copernicus od leta 2015 do danes. V magistrskem delu uporabimo satelitske posnetke satelita Sentinel-2, da strojne modele naučimo prepoznavati spremembe na površju Zemlje, v določenem časovnem obdobju. V prvem delu opišemo tehnike daljinskega zaznavanja sprememb na satelitskih slikah. V nadaljevanju opišemo naši dve metodi implementacije zaznave sprememb in ju primerjamo. Ugotovimo, da obe metodi delujeta dobro in s pomočjo modela nevronskih mrež z visoko natančnostjo zaznavata spremembe na površju. Ključne besede: Zaznava sprememb, Časovna analiza, Sentinel-2, Daljinsko zaznavanje Objavljeno v DKUM: 01.03.2024; Ogledov: 372; Prenosov: 35
Celotno besedilo (4,04 MB) |