| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Klasifikacija časovnih vrst s konvolucijskimi nevronskimi mrežami
Domen Kavran, 2020, magistrsko delo

Opis: V magistrskem delu predstavimo klasifikacijo časovnih vrst z uporabo konvolucijskih nevronskih mrež. Klasifikacija je izvedena nad časovno-frekvenčnimi predstavitvami časovnih vrst, ki so pridobljene z različnimi metodami časovno-frekvenčne analize. Zasnovali smo več arhitektur konvolucijskih nevronskih mrež za klasifikacijo časovnih vrst. Optimizacijski algoritmi za učenje konvolucijskih nevronskih mrež so uporabljali napredno izgubno funkcijo, imenovano žariščna izguba. Za najuspešnejšo metodo izračuna časovno-frekvenčnih predstavitev časovnih vrst se je izkazala zvezna valčna transformacija, s katero smo dosegli povprečno natančnost klasifikacije 90,07 %. Združitev različnih časovno-frekvenčnih predstavitev je izboljšala povprečno natančnost klasifikacije na 92,01 %.
Ključne besede: klasifikacija, globoko učenje, konvolucijske nevronske mreže, časovne vrste, časovno-frekvenčna analiza
Objavljeno: 03.07.2020; Ogledov: 317; Prenosov: 122
.pdf Celotno besedilo (10,95 MB)

2.
Klasifikacija dogodkov v časovnih vrstah s strojnim učenjem
Domen Kavran, 2018, diplomsko delo

Opis: V diplomskem delu opišemo algoritem segmentacije časovnih vrst in postopek priprave vektorjev značilnic segmentov za učenje in testiranje klasifikacijskih modelov za zaznavo dogodkov. Segmentacijo časovnih vrst izvedemo z algoritmom drsečega okna, kjer za merilo razdalje med vrednostmi uporabimo algoritem dinamičnega časovnega sledenja. Pripravo vektorjev značilnic segmentov začnemo z definiranjem slovarja lokalnih podsegmentov. Slovar je pridobljen z gručenjem K-povprečij. Vsak segment predstavimo z normaliziranim histogramom pojavitev lokalnih podsegmentov na podlagi slovarja. Za učenje klasifikacijskih modelov uporabimo algoritme strojnega učenja, ki se razlikujejo v računski zahtevnosti in doseženi natančnosti, na katero vplivajo tudi izbrani parametri segmentacije in velikost slovarja.
Ključne besede: klasifikacija, časovna vrsta, strojno učenje, segmentacija
Objavljeno: 28.08.2018; Ogledov: 1231; Prenosov: 152
.pdf Celotno besedilo (979,03 KB)

Iskanje izvedeno v 0.08 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici