Opis: We develop geometric techniques to determine the spectrum and the chiral indices of matter multiplets for four-dimensional F-theory compactifications on elliptic Calabi-Yau fourfolds with rank two Mordell-Weil group. The general elliptic fiber is the Calabi-Yau onefold in dP(2). We classify its resolved elliptic fibrations over a general base B. The study of singularities of these fibrations leads to explicit matter representations, that we determine both for U(1) xU(1) and SU(5) x U(1) x U(1) constructions. We determine for the first time certain matter curves and surfaces using techniques involving prime ideals. The vertical cohomology ring of these fourfolds is calculated for both cases and general formulas for the Euler numbers are derived. Explicit calculations are presented for a specific base B = P-3. We determine the general G(4)-flux that belongs to H-V((2,2)) of the resolved Calabi-Yau fourfolds. As a by-product, we derive for the first time all conditions on G(4)-flux in general F-theory compactifications with a non-holomorphic zero section. These conditions have to be formulated after a circle reduction in terms of Chern-Simons terms on the 3D Coulomb branch and invoke M-theory/F-theory duality. New ChernSimons terms are generated by Kaluza-Klein states of the circle compactification. We explicitly perform the relevant field theory computations, that yield non-vanishing results precisely for fourfolds with a non-holomorphic zero section. Taking into account the new Chern-Simons terms, all 4D matter chiralities are determined via 3D M-theory/F-theory duality. We independently check these chiralities using the subset of matter surfaces we determined. The presented techniques are general and do not rely on toric data. Ključne besede:flux compactifications, F-theory Objavljeno: 27.06.2017; Ogledov: 53; Prenosov: 3 Celotno besedilo (1,75 MB)

Opis: We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m) x U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) X Z(k) structure group and bundles with purely non-Abelian structure groups having a centralizer in E-8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. While the number of geometrically massless U(1)'s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)'s is found by taking into account a Stiickelberg mechanism in the lower-dimensional effective theory. In geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally. Ključne besede:F-theory, string duality, superstrings, heterotic strings, M-theory Objavljeno: 27.06.2017; Ogledov: 125; Prenosov: 2 Celotno besedilo (1,15 MB)