| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
3D-printed cellulose aerogels minimally cross-linked with polyurea : a robust strategy for tissue engineering
Ana Iglesias-Mejuto, Grigorios Raptopoulos, Nanthilde Malandain, Mariana Neves Amaral, Inés Ardao Palacios, Matjaž Finšgar, Anna Laromaine, Anna Roig, Catarina Pinto Reis, Carlos A. García-González, Patrina Paraskevopoulou, 2025, izvirni znanstveni članek

Opis: Cellulose and its derivatives are increasingly explored in biomedical applications due to their biocompatibility,biodegradability, and mechanical performance. In regenerative medicine, aerogel scaffolds with tunable morphology and compositionare highly valued for their ability to support tissue regeneration. Three-dimensional (3D) printing offers an effective method tofabricate aerogels with hierarchical pore structures, comprising interconnected macropores and mesopores, that are crucial for tissueengineering. For clinical use, 3D printing should ensure the structural integrity of printed structures and achieve a printing resolutionthat allows for customization. In this work, the X-aerogel technology, implemented via polyurea cross-linking, was applied to 3D-printed cellulose structures, thereby expanding the potential applications of both technologies. Specifically, 3D-printedmethylcellulose (MC) and MC doped with bacterial cellulose nanofiber (MCBCf) gels were cross-linked with an aliphaticpolyurea, yielding, after supercritical drying, the corresponding (X-MC and X-MCBCf) aerogels. Elaborate characterization withATR-FTIR, XPS, ToF-SIMS, N2 porosimetry, He pycnometry, and SEM confirmed the formation of polyurea on the biopolymerframework, reinforcing the structure and improving the mechanical properties without altering the morphology or texturalcharacteristics of the materials. A significant outcome of cross-linking with polyurea is the long-term stability of X-MC and X-MCBCf aerogels in water, in contrast to their native counterparts, and their capacity to absorb water up to 1800% w/w within only 2h. Preliminary biological evaluation of the materials, including in vitro (cell compatibility, hemolytic activity), in ovo (HET-CAM),and in vivo (A. salina model) tests, showed good cell viability, blood compatibility, and safety for living organisms. From afundamental materials perspective, the most important finding of this work is the disproportionally high stability of X-MC and X-MCBCf in physiological environments, achieved with only a minimal (almost undetectable) amount of cross-linking polyurea. Froman application standpoint, the findings of this study, collectively, position these aerogels as sustainable and promising candidates fortissue engineering scaffolds.
Ključne besede: 3D printing, aerogels, cellulose, methylcellulose, polyurea, tissue engineering, X-aerogels
Objavljeno v DKUM: 30.05.2025; Ogledov: 0; Prenosov: 6
.pdf Celotno besedilo (7,71 MB)

Iskanje izvedeno v 0.01 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici